
www.manaraa.com

A Software Process Engineering Approach to Understanding

Software Productivity and Team Personality Characteristics:

An Empirical Investigation

Murat YILMAZ

Master of Science in Software Engineering

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. Rory V. O’Connor

January 2013

www.manaraa.com

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely

my own work, that I have exercised reasonable care to ensure that the work is

original, and does not to the best of my knowledge breach any law of copyright,

and has not been taken from the work of others save and to the extent that

such work has been cited and acknowledged within the text of my work.

Signed:

ID No.: 59111500

www.manaraa.com

Acknowledgements

Although intellectually a fruitful experience, working on a PhD may be one of

the most challenging undertakings I have ever had in my whole life. This is

mostly because, PhD research requires a sustained and intense focus on your

project; learning to write academic papers, reading them over and over again,

presenting your work, and staying up till the early-morning light. Important

accomplishments are rarely product of a lonely process; a researcher needs a

group of people who believe in his success.

During the course of this unforgettable experience, I am indebted to a number

of people who did not leave me alone while I was lost amid confusion. First and

the foremost, I am deeply grateful to my supervisor Dr. Rory V. O’Connor,

who mentored me through every step of my doctoral studies with his remarkable

communicative and academic skills. His ability to set high quality standards,

his vision, patience, wit and wisdom that support and guide me through every

stumble in the steps of my PhD project made this thesis possible.

My motivation to pursue a PhD degree in Software Engineering was initiated

while I was working on my Masters degree at the University of Minnesota.

Henceforth, I would like to thank Dr. John Collins, my Masters supervisor,

who helped me to shape my preliminary idea. In addition, I would like to

extend a heartfelt thanks to Dr. Ugur Halici, and Bulent Kandiller, to whom I

cut my teeth in several different projects in the software industry.

I am also grateful to Lero - the Irish Software Engineering Research Center for

funding my doctorate and to Dublin City University for the numerous facilities

they provided. It has been a privilege to get to know both the people at DCU

and my colleagues at Lero.

www.manaraa.com

Unfortunately, over the course of my life, I have lost a number of people close

to heart. Among them, I am quite certain that my mother Yucel and my

grandmother Rana would be proud of me for pursuing a doctoral degree. May

they all rest in peace!

Many thanks to my colleagues and close friends; Ozgur Ergul, Murat Yeralti,

Berke Atasoy, Pelin Atasoy, Burak Elmas, Demokan Atasoy for exchanging

ideas, sharing visions, providing me with their constructive comments and vivid

suggestions for several parts of this study. Furthermore, I would like to extend

my sincerest thanks to Paul Clarke for his efforts to improve the quality of my

Ireland experience particularly with his supportive companionship in the form

of a whimsical elf.

Thanks to Bulent Ozen, Mr. Atalay, Y. M. Erten, Nagihan, Emrah, Alper and

Musa for their support in the industrial settings. It was greatly appreciated.

Finally, I save the last and the most insufficient word of gratitude for my wife,

Aysel, not only for her love but also her valuable insights, and her ultimate

support and encouragement. Concurrently, I deeply appreciate her unwavering

patience for the times I was away from home to pursue my PhD. Thank you

with all my heart!

I would like to dedicate this work to Aysel Yilmaz for her loving and support,

which makes the PhD her success as much as it is mine.

Science is the most reliable guide for civilization,

for life, for success in the world.

Searching a guide other than the science is

meaning carelessness, ignorance and heresy.

Mustafa Kemal Atatürk

iv

www.manaraa.com

Contents

Abstract xvii

I Preliminaries 1

1 Introduction 2

1.1 Research Problem . 3

1.2 Context of Current Research . 5

1.2.1 Value-Based Software Development Productivity 5

1.2.2 Games Playable by Software Teams 7

1.3 Research Objectives . 9

1.4 Research Questions and Hypotheses 10

1.5 Organization of the Thesis . 13

2 Background 15

2.1 Introduction . 15

2.2 Software Development Process 15

2.3 Software Process Models . 17

2.3.1 Spiral Model . 18

2.3.2 WINWIN Spiral Model 19

2.4 Software Process Improvement 21

2.5 ISO/IEC 12207 Software Life-cycle Model 23

2.6 Agile Methods . 24

2.7 Chapter Summary . 26

v

www.manaraa.com

II Research Methodology 27

3 Research Design and Methodology 29

3.1 Introduction . 29

3.2 Research Philosophy . 29

3.2.1 Qualitative Research . 30

3.2.2 Quantitative Research . 31

3.2.3 Triangulation and Mixed Methods 32

3.3 Choice of a Research Methodology 34

3.3.1 Case Study Research . 36

3.3.1.1 Threats to Validity 39

3.3.2 Survey Research . 40

3.3.3 Structural Equation Modeling 41

3.3.4 Game Playing as a Data Collection Method 45

3.3.4.1 Our Novel Approach 45

3.3.5 Grounded Theory . 47

3.3.5.1 Justification for Using Grounded Theory 48

3.3.6 Focus Group . 48

3.3.7 Summary . 49

3.4 Research Process: Case Study I 51

3.5 Research Process: Case Study II 53

3.6 Holistic View of Research Activities 56

3.7 Chapter Summary . 57

III Literature Review & Theoretical Contributions 58

4 Application of Games in Software Engineering 60

4.1 Introduction . 60

4.2 Defining Games and Gamification 60

4.3 Game Theory . 63

4.4 Games in Software Engineering 64

4.5 Mechanism Design . 67

vi

www.manaraa.com

4.6 A Game Theoretic Perspective 69

4.6.1 A Conceptual Game Model 70

4.6.2 Two Person Game Form 70

4.7 Game Composition as a MD Problem 72

4.8 Rules of the Game . 73

4.9 Chapter Summary . 75

5 Social and Value Dynamics of Software Development 76

5.1 Introduction . 76

5.2 The Software Ecosystem . 76

5.3 Social and Value Dynamics . 77

5.4 The Software Artifact . 78

5.5 Productivity . 79

5.5.1 Economic Productivity . 79

5.5.2 Software Productivity . 80

5.5.3 Software Productivity Improvement 82

5.5.4 Factors of Productivity 83

5.6 The Economic Value of a Software Development Process 84

5.7 Human and Social Capital . 86

5.8 Social Productivity . 89

5.9 Chapter Summary . 93

6 Roles and Personality Traits 94

6.1 Introduction . 94

6.2 Roles in Software Development Processes 94

6.2.1 Content Analysis of Software Development Roles 95

6.2.2 Roles in traditional software development 96

6.2.3 Roles in ISO/IEC 12207 97

6.2.4 Roles in Extreme Programming 99

6.2.5 Roles in Scrum . 99

6.2.6 Roles in FDD . 100

6.2.7 Roles in People CMM . 101

vii

www.manaraa.com

6.2.8 A Summary of Roles Contained in Selected Models 102

6.2.9 The Roles Wheel . 103

6.3 Personality Research . 104

6.3.1 Jung’s Model of Cognitive Modes 106

6.3.2 Personality Research in Software Engineering 107

6.3.3 Personality Temperaments 111

6.3.4 The Periodic Table Approach 113

6.4 Chapter Summary . 116

IV Empirical Contributions 117

7 Empirical Findings: Case Study I 119

7.1 Introduction . 119

7.2 Data Collection . 120

7.2.1 Industrial Focus Group 121

7.2.2 Survey Instrument . 121

7.3 Data Analysis . 123

7.4 Confirmatory Factor Analysis and Construct Validity 126

7.5 Models with One Latent Construct 126

7.5.1 Models for Social Productivity 128

7.5.2 Models for Social Capital 130

7.6 Models with Two Latent Constructs 132

7.7 Refined Structural Equation Models 135

7.8 The Tripartite SEM Model . 138

7.9 The Impact of Teams and Roles to Productivity, Social Produc-

tivity, and Social Capital . 140

7.10 Case Study I: Threats to Validity 144

7.11 Chapter Summary . 146

8 Empirical Findings: Case Study II 147

8.1 Introduction . 147

8.2 Crafting the Instrument and Protocols 148

viii

www.manaraa.com

8.2.1 Initiation phase . 149

8.2.1.1 Initial Interviews 149

8.2.1.2 Validation of the Codebook 151

8.2.2 Card Creation Phase . 152

8.2.3 Comparison Phase . 153

8.3 Rules of the Game . 155

8.4 Quantitative Evaluation of the Survey Instrument 156

8.4.1 Pilot Study I . 156

8.4.2 Pilot Study II . 156

8.4.3 Measuring the Reliability of Questions on Cards 157

8.4.4 A Sample Calculation . 157

8.5 Quantification of the Instrument: Average of Weights 160

8.6 An Industrial Implementation . 162

8.6.1 MBTI-Team Radar . 164

8.6.2 Software Teams . 165

8.6.2.1 Team Triskele 166

8.6.2.2 Team Camelot 167

8.6.2.3 Team Hector . 169

8.6.2.4 Team Finn . 170

8.6.2.5 Team Laran . 171

8.6.2.6 A Brief Discussion about Findings 172

8.7 Case Study II: Threats to Validity 173

8.8 Chapter Summary . 174

V Discussions & Conclusions 175

9 Discussions 176

9.1 Introduction . 177

9.2 Discussion of the Case Study I 177

9.2.1 Validation Interviews . 178

9.2.2 Limitations . 178

ix

www.manaraa.com

9.3 Discussion of the Case Study II 180

9.3.1 Validation of the Instrument 180

9.3.2 Limitations . 182

9.4 Revisiting the Research Questions and Hypotheses 183

9.5 Chapter Summary . 188

10 Conclusions and Future Work 189

10.1 Introduction . 189

10.2 Industrial Case Study I . 189

10.3 Industrial Case Study II . 191

10.4 Research Contributions . 193

10.5 Recommendations for Future Work 195

Bibliography 228

VI Appendices 229

Appendix A Survey Instrument 230

Appendix B Sample Coding for Extroversion 245

Appendix C Survey Data 247

Appendix D Cronbach Alpha Calculations 251

Appendix E Pilot Study Card Game Game Data 252

Appendix F Summary of Interview Reinterview Table for All

Questions 255

Appendix G Avarage of Weights - Survey Data 257

Appendix H Industrial Implementation of Card Game Data 260

Appendix I Situational Context Cards 263

x

www.manaraa.com

List of Figures

2.1 A Meta-Model for Software Engineering Process. 17

2.2 The spiral development model . 18

2.3 The WINWIN spiral development model 20

2.4 The Structure of a Process . 24

3.1 Overall Research Design . 37

3.2 A Conceptual Overview of the Research 50

3.3 The Systematic Approach for Creating SEM Models of Produc-

tivity . 51

3.4 The Steps Involved in Our Systematic Research Process 53

3.5 Holistic View of Research Activities 55

3.6 A part of the conceptual overview of the research 59

4.1 The Sequential Steps of the Game of Revealing Personality Traits 74

5.1 A productivity Model Based on Factors Affecting Software De-

velopment. 85

5.2 A Model of Social Capital . 89

5.3 A Social Productivity Model Based on Factors Affecting Software

Development. 92

6.1 A Summary of Roles Contained in the Different Approaches . . . 104

6.2 The Personality Wheel . 113

6.3 The Periodic Table Type Classification for Personality Types . . 114

7.1 A part of the conceptual overview of the research 119

xi

www.manaraa.com

7.2 Model I with Loadings with Fifteen Factors of Productivity of

Software Development . 127

7.3 Model II with Loadings with Company Selected Seven Factors

of Productivity of Software Development 128

7.4 Model III with Loadings for Six Factors of Social Productivity

for Software Development . 129

7.5 Model IV with Loadings for Eight Company Selected Factors of

Social Productivity for Software Development 129

7.6 Model V with Loadings with Seven Factors of Social Capital in

a Software Development Organization 131

7.7 Model VI Loadings with six factors of Social Capital based on

Company Selected Parameters 131

7.8 Model VII for Productivity and Social Productivity in a Software

Development Organization . 133

7.9 Model VIII for Social Productivity and Social Capital in a Soft-

ware Development Organization 134

7.10 Model IX for Productivity and Social Productivity in a Software

Development Organization . 136

7.11 Model X for Social Productivity and Social Capital in a Software

Development Organization . 137

7.12 Model XI for Productivity, Social Productivity and Social Capi-

tal in a Software Development Organization 139

8.1 A part of the conceptual overview of the research 147

8.2 The Systematic Process for Creating Context Cards 149

8.3 Illustration of the codebook extracted from emergent keywords . 153

8.4 A Two-faced Situational Context Card Example 154

8.5 Question 18 Selected from SCC as a Concrete Example 158

8.6 A MBTI-Team Radar Template 165

8.7 Team Radar for Team Triskele 167

8.8 Team Radar for Team Camelot 168

8.9 Team Radar for Team Hector . 169

xii

www.manaraa.com

8.10 Team Radar for Team Finn . 170

8.11 Team Radar for Team Laran . 171

9.1 A part of the conceptual overview of the research 176

9.2 The Averages of Personality Traits for All Teams 181

xiii

www.manaraa.com

List of Tables

3.1 A Classification of Research Methodologies 30

3.2 Qualitative versus Quantitative Research 32

3.3 Six Sources of Evidence for the Data Collection 38

3.4 Threats to Validity for Empirical Research in Software Engineering 40

3.5 Descriptions and Cut-offs for the Fit Indexes Adapted from [131] 44

4.1 Outcome Matrix of the Game: Key: (x,y) = (P,GM)→ 4 = best;

3 = next best; 2 = next worst; 1 = worst; -1 = improbable . . . 71

6.1 Traditional Software Development Roles 96

6.2 Systems Engineering Roles and their values from [268] 97

6.3 Roles in ISO/IEC 12207 (adapted from [3,46]) 98

6.4 Roles in XP (adapted from [58,270]) 99

6.5 Roles in SCRUM (adapted from [59]) 100

6.6 Roles in FDD (adapted from [60,270]) 101

6.7 Comparison of Role-job Descriptions 102

6.8 Dichotomies (the four opposite pairs of preferences) 105

6.9 Jung’s Cognitive Modes . 107

6.10 Periodic Table of (%) Personality Traits of a Software Develop-

ment Organization . 115

6.11 Periodic Table Representation of Temperaments 115

7.1 Distribution of Roles of the Participants in Development Orga-

nization . 123

xiv

www.manaraa.com

7.2 Individual Sections of the Questionnaire with respect to Relia-

bility Coefficients . 124

7.3 Means, Variances and Standard Deviations of the Factors of Pro-

ductivity . 125

7.4 Means, Variances and Standard Deviations of the Combined Fac-

tors . 135

7.5 Goodness-of-Fit indexes for all Constructed Structural Equation

Models (refer to Table 3.5 for cut-offs) 139

7.6 Roles versus the Means, Standard Deviations, and Coefficient of

Variation for the Social Constructs 140

7.7 Mean Scores of Roles versus Team Constructs 141

7.8 Roles versus Participants Thoughts on Team Size 142

7.9 Statistically Significant Pairwise Correlations for Roles from the

Survey . 143

8.1 Participants’ Information . 150

8.2 The identified themes with respect to the derived questionson

Cards . 152

8.3 Expert Reviewers’ Information 154

8.4 Interview Reinterview Table for Question 18 158

8.5 The Range of κ numbers found for the entire survey instrument . 159

8.6 Personality Traits found by Situational Context Cards in Pilot

Study . 159

8.7 Factors of Personality Traits, Descriptions, Means, Standard De-

viations, Variances, Average of Weights, and Traits 161

8.8 Personality Traits found by Situational Context Cards in an In-

dustrial Setting . 163

8.9 Overall Average Percentage of the participants with roles versus

their traits . 163

8.10 Team Triskele with roles versus members’ traits 166

8.11 Team Camelot with roles versus members’ traits 168

8.12 Team Hector with roles versus personality traits 169

xv

www.manaraa.com

8.13 Team Finn with roles versus personality traits 170

8.14 Team Laran with roles versus personality traits 171

9.1 Overall Percentages of Team Averages on Team Personality Traits181

9.2 Periodic Representation of the Percentage of Practitioners in the

Sample . 182

xvi

www.manaraa.com

Abstract

Despite the significant effort in managing the complexities of software devel-

opment by using several engineering analogies, there is still no comprehensive

approach that recognizes software development as a social activity and software

productivity in form of an intangible asset gained and maintained by social rela-

tions. This study proposes a model in which software productivity improvement

is investigated as a function of the factors affecting productivity, whereas team

productivity is considered as a compatibility problem of distinct personality

traits that should be situated in an efficient social configuration. The funda-

mental assumption is that the productivity is a latent construct measurable

by a set of indicators and improvable by relating personality traits and team

configurations.

The two main contribution of this thesis is to develop an understanding of the

factors affecting software productivity by empirical investigation and to build

a personality-profiling test based on a psychometric scale specific to software

practitioners. To assess the validity of our approach, we conducted a two-

step empirical study in an industrial setting: (i) a psychometric survey on

216 software practitioners for measuring the correlations among the factors

affecting productivity, and (ii) a domain specific game-based personality test

on 63 participants for investigating the implications of personality types over the

effective team configurations. Our findings indicate that software productivity

is positively associated with social productivity and social capital, and can be

measured by 21 different indicators identified from the literature. In addition,

social aspects such as team size and individual’s characteristics have a significant

affect on productive team formations. A strong negative association is observed

between social capital and the time practitioners spend in a software company.

Evidence suggests that individuals in software teams become more extroverted

while the effective configurations are still achieved with teams populated by

balanced personality traits.

www.manaraa.com

Related Peer Reviewed Publications

Twelve papers (numbered P1 to P12) and two posters directly are related to

the PhD research have been published are as follows:

Papers

Yilmaz M., O’Connor R.V., “Maximizing the Value of the Software

Development Process by Game Theoretic Analysis: A proposal for

research into Game Theory” in Proceedings of the 11th International

Conference on Product Focused Software, ser. PROFES 10. New

York, NY, USA: ACM, 2010, pp. 9396. (P1)

Yilmaz M., O’Connor R.V., Collins J., “Improving Software Devel-

opment Process through Economic Mechanism Design”, EuroSPI

2010 (European Software Process Improvement Conference), A. Riel

et al, Eds., vol. 99. Springer Berlin Heidelberg, 2010, pp. 177-188.

(P2)

Yilmaz, M. and O’Connor, R., “An Empirical Investigation into

Social Productivity of a Software Process: An approach by using

the structural equation modeling”, 18th European Software Process

Improvement Conference, CCIS Vol. 172, Springer-Verlag, June

2011. (P3)

Yilmaz, M. and O’Connor, R., “An approach for improving the so-

cial aspects of the software development process by using a game

theoretic perspective: towards a theory of social productivity of soft-

ware development teams”, 6th International Conference on Software

and Data Technologies, July 2011. (P4)

Yilmaz, M. and O’Connor, R., “A Software Process Engineering

Approach to Improving Software Team Productivity using Socioeco-

nomic Mechanism Design ”, ACM SIGSOFT Software Engineering

Notes, Vol. 36, No. 4, September, pp. 1-5, 2011. (P5)

xviii

www.manaraa.com

Yilmaz, M. and O’Connor, R., “Using Game Theory to Improve

Productivity Software Teams - Developed a Software Process Engi-

neering Approach [in Turkish]”, Proceedings Turkish National Soft-

ware Engineering Symposium, September, 2011. (P6)

Yilmaz, M. and O’Connor, R., “A Systematic Approach to the Com-

parison of Roles in the Software Development Processes, Proceed-

ings 12th International Conference on Software Process Improve-

ment and Capability dEtermination”, CCIS Vol. 290, Springer-

Verlag, May 2012. (P7)

Yilmaz, M. and O’Connor, R., “A Market Based Approach for Re-

solving Resource Constrained Task Allocation Problems in a Soft-

ware Development Process”, 19th European Conference on Systems,

Software and Services Process Improvement (EuroSPI 2012), CCIS

Vol. 301, Springer-Verlag, June 2012. (P8)

Yilmaz, M. and O’Connor, R., “ Towards the Understanding and

Classification of the Personality Traits of Software Development

Practitioners: Situational Context Cards Approach”, 38th Euromi-

cro Conference on Software Engineering and Advanced Applica-

tions, September 2012. (P9)

Yilmaz, M. and O’Connor, R., “Social Capital as a Determinant

Factor of Software Development Productivity: An Empirical Study

using Structural Equation Modeling”, International Journal of Hu-

man Capital and Information Technology Professionals, Vol. 3, No.

2, 2012. pp. 40-62. (P10)

xix

www.manaraa.com

Related Publications: Under Peer Review

Yilmaz, M. and O’Connor, R., “An Empirical Study to Evaluate

the Factors Affecting Software Development Productivity”, Under

review for the Journal of Empirical Software Engineering. Submit-

ted December 2012. (P11)

Yilmaz, M. and O’Connor, R., “Towards A Game-Based Methodol-

ogy for Understanding Effective Software Team Structures”. Under

review for Journal of Systems and Software. Submitted October

2012. (P12)

Posters

Yilmaz, M. and O’Connor, R., “Improving software process produc-

tivity by modeling the interaction among the team social structures

using game theoretic analysis”, Poster, SEPG Europe Conference,

Dublin, Ireland, June 2011.

Yilmaz, M. and O’Connor, R., “Improving Software Development

Process through Economic Mechanism Design”, Research Poster at

Lero Research Showcase, 2010.

xx

www.manaraa.com

Part I

Preliminaries

1

www.manaraa.com

Chapter 1

Introduction

Software process and productivity improvement encompass the activities,

which promise to increase the quality of a software product [1]. Predictably,

these activities need to align process, tools and technologies with human fac-

tors and social considerations [2, 3]. According to DeMarco and Lister [4], the

major problems encountered in software development activities are more socio-

logical than technical in their nature. Software development is a form of social

activity [3, 5]. Therefore, it is commonly conducted by teams consisting of in-

dividuals identified by characteristics of individualism, rationality, and mutual

interdependence [6]. In this particular viewpoint, one can argue that several

factors affecting the software development process should arise from the com-

plexity of individuals’ interactions and social communication costs. Because

they are hindering the software productivity, the investigation of social factors

and corresponding interest in social aspects of software development has become

a part of software engineering body of research [5].

Software development is mainly governed by human-centric activities, and there-

fore, a number of social factors and individuals’ personalities should have a sig-

nificant impact on the productivity of software development as well as on the

effectiveness of software development teams. Although it is becoming increas-

ingly difficult to ignore the importance of social aspects of software development

for productivity improvements, to date most of the earlier software productiv-

2

www.manaraa.com

ity research has focused heavily on the software process with little importance

attached to the impact of the personalities of the individuals involved.

Recently, the social issues of software development have received critical atten-

tion [7]. Thus, there is a vital need to understand both the factors of software

development productivity and effective software team configurations, which are

at the heart of understanding the human aspects of the software development

process. However, there is still a gap between the social world of software

development and the technical world of software development landscapes [5].

To address this gap, this research has adopted a novel multi-perspective ap-

proach to examining the factors and the personality characteristics of software

practitioners affecting the productivity of software development organizations.

Firstly, the factors affecting the software productivity are investigated and sev-

eral techniques are applied to identification of these factors. Secondly, software

practitioners’ personalities and their preferences are investigated in detail by us-

ing a game-based approach. This is the first published research to demonstrate

such findings, which are emphasizing the importance of human considerations

in software development.

1.1 Research Problem

Despite the significant varieties of software development processes and project

management techniques, software projects may still fail for a variety of rea-

sons: (i) vague definitions of project goals, (ii) imprecision of the resource es-

timates, (iii) communication and coordination problems (e.g. conflicts) among

the stakeholders, and (iv) bad managerial decision making [8]. Hartman [9]

reports that the percentage of failed projects has significantly declined, how-

ever, many software projects are still unsuccessful for several reasons such as

limited communication among the individuals and a lack of appropriate method

for measuring software productivity. Jones states in his book “As of 2009, the

great majority of companies and the great majority of software engineers have

no effective measurements of either productivity or quality.” [10, pp. 20]. The

available evidence confirms that a number of software project failures are not

3

www.manaraa.com

only because of technical difficulties but also because of human related factors

such as team incompatibility problems, and personal conflicts [4].

As regards people, their interactions, and the impact of software organization

on productivity, it is important to understand that a substantial amount of

these problems originate from social issues [3, 11]. Consequently, software de-

velopment productivity seems to be affected by (i) factors affecting software

productivity and its social aspects, (ii) personality characteristics of partici-

pants that are involved in the development process.

In addition, we envision that the outcomes of a software production process

should heavily rely on the classification of the psychological and social struc-

ture of individuals regarding their roles and characteristics among the devel-

opment organization. For the individuals working in such networks, we should

consider methods that support the maximization of their collective output.

Such methods should generally involve profiling the personality characteristics

of the individuals that constitute the network and illustrating their efficient

team structures based on their personality types, and ultimately seek ways to

maximize the productivity of the group as a whole. However, such techniques

are currently underutilized in software development.

This project was conceived while I was working in the software development in-

dustry. As a senior software practitioner, I often observed software productivity

problems, which were due to not only technical factors but also the social issues

such as team staffing, team size, and member compatibility. The fundamental

motivation of this study is a belief that it is important to reveal the software pro-

ductivity factors of a software development organization and explore effective

software team configurations by visualizing their personality characteristics as

a whole. Industrial evidence found concerning the subject matter is presented

in this thesis in Part IV Empirical Contributions.

4

www.manaraa.com

1.2 Context of Current Research

This section details the characteristics of the research domain. Firstly, the

importance of the value-based understanding of the factors affecting software

development productivity is discussed. Secondly, the benefits of a game based

personality assessment specifically developed for software development land-

scapes are presented.

1.2.1 Value-Based Software Development Productivity

Software engineering is generally considered as a challenging team based activ-

ity, which requires the interaction of one or more skillful individuals. Such a

viewpoint suggests that it should be performed in the form of a social activity

to promote its collaborative and social aspects within a wide spectrum of stake-

holders [12, 13]. Indeed, over the last decade a significant amount of software

engineering researchers have considered the software practice as a social activ-

ity and have conducted research on the implications of social approaches to

the software development process [5]. Being able to create a quantifiable value

(e.g. valuation of production assets, managing decisions under uncertainty,

etc.) from the planned software activities not only accomplishes stakeholders’

goals but also is an axiomatic step towards improving the productivity of soft-

ware development organizations as a whole. However, it is the proposition of

the research that understanding the social problems of software development

requires a different management approach, which can characterize the flow of

knowledge, its role in decision-making, and their consequences, which relate

the individual and collective goals of the stakeholders [14]. As a consequence

of indefinite scientific definition of quality in software engineering literature, it

appears that there is a lack of understanding of the economic value of software

quality, which seems to be an important referent that is hindering software

productivity [10]. In fact, the present study contends that there is a need for

techniques to deal with the factors that hinder the velocity (i.e. productivity)

of software development.

Despite the fact that it might be easier to organize the software development

5

www.manaraa.com

work in a value neutral environments, this has been found as one of the po-

tential reasons for the failure of software projects in several development land-

scapes [15]. To bridge this gap, a number of approaches to integrating value-

based propositions in software engineering research have been adopted. Dating

back to 1980s, Boehm introduced the first idea of integrating value consider-

ations for the activities of software development in his book, Software Engi-

neering Economics [16]. Later, research was performed to apply the concepts

from economics to software engineering. For example, some studies focused on

addressing problems in software architecture [17] and design decisions as real

options [18], understanding software development as an investment activity [19],

analyzing risks and uncertainties that alters the value of information [20], im-

proving the speed and therefore the productivity of the software development

process [21], and constructing several value-based software engineering frame-

works [14,22,23], etc.

One of the main considerations of value-based software development produc-

tivity is to understand the people management issues of software development

using a value-oriented approach, useful for managing stakeholder negotiations,

building software teams and maintaining team configurations [22]. It can be

used for investigating social and ethical issues that are encountered in the soft-

ware development life-cycle. These managerial issues, however, could cause

fluctuations in the productivity of a software development process. Moreover, it

is important to recognize that the effectiveness of software development teams

is also dependent on the factors that are affecting the software development

productivity.

To understand the implications of the productivity framework of a software

organization, a series of models have been proposed with emphasis on social

and economic factors inducing productivity. Thus, we claim that empirically

validating the factors based models that are contributing to the software de-

velopment productivity will provide an efficient way to maximize the economic

value created in a software development process.

6

www.manaraa.com

1.2.2 Games Playable by Software Teams

In the last decade, we have learned that the technical skills of people are not

enough to construct highly productive software teams (see e.g. [24, 25]). One

reason for this is that the new knowledge-driven global economy shifts its de-

mands from technical to social skills of individuals [26], who can adopt net-

worked forms of an organization [27]. Recently, a substantial amount of lit-

erature has reported that software development is a social activity [3, 5], in

which individuals with diverse personal characteristics are to work together to

produce sophisticated software artifacts [28]. Ryan and O’Connor [29] suggest

that software development relies on the communication skills and abilities of a

software development team, and therefore the productivity of a software organi-

zation is positively affected by the levels of social cohesion among its members.

Games can be used to improve the social cohesion, and they reveal individuals’

behaviors.

Game theory is a field of mathematics, which has been frequently applied to

social sciences (especially in sociology and political sciences) for analyzing many

different situations, e.g. variability of individual behaviors, and formation of

coalition structures among the individuals and human networks [30]. Further-

more, the study of games has flourished over the last several decades and at-

tracted many researchers. As a result, it has been applied to several diverse

fields [31] including biology, linguistics, psychology, philosophy, and later in

computer science [32]. The evidence exists, suggesting that software develop-

ment organizations rely heavily on the strategic nature of software management

activities [33,34] (e.g. identifying stakeholders, understanding competitors and

market conditions). Therefore, we suggest that software management teams

should benefit from what game theory offers.

The notion of games is ubiquitous and highly connected with characterization

of human activities with several benefits. They could even offer solutions for

society based problems in a social setting [35]. Therefore, it is not surpris-

ing to discover that games that are played in societies have great social and

economic benefits. From the outset, games enable us to form collective social

7

www.manaraa.com

organizations, which ultimately produce considerable advantage for building

complex software artifacts. On the other hand, to constitute better software

development teams, we should benefit from personality assessments, which may

also particularly be useful for improving the team productivity in the software

development process.

A general assumption is that personality traits significantly affect the human

behavior [36]. Although most people agree types of behaviors vary in different

situations, for most of the individuals there is an observable pattern of con-

sistency in their behaviors. The classical approach to organizing individuals

according to their personality types requires performing a personality question-

naire. Several psychometric tests are used to capture non-context dependent

behavior. For example, they are used to assign personnel to the right job, by

predicting potential skills. Same of these tests are primary mental abilities

test, wonderlic personnel test, and programmer aptitude test [37]. However,

observing individual’s verbal decisions in several different context-dependent

situations can more effectively reveal the personality traits of an individual.

The personality profiling of software practitioners is a challenging task. There

are contradicting arguments (e.g. [38]) about the difficulty of revealing the per-

sonality traits of a software practitioner or an IT project personnel using a

classical a psychological-assessment test such as the Myers-Briggs Type Indi-

cator (MBTI). Some personality researchers also suggest that a verbal report

is not enough to evaluate their success, while others claim that these tests are

powerful enough to reveal participants’ personality types. In practice, however,

there is no assurance that the answers of individuals are accurate.

Being highly interactive, a game-based alternative provides a real advantage

over classical approaches. Not only does it strengthen the social fabric of a

software development team, but it also improves collaboration skills and in-

dividuals’ concentration on collective outcomes. Additionally, games have a

potential to keep people individually motivated [35] with the idea of social suc-

cess and improve their ability to understand each others’ thoughts and feelings.

The idea of creating a card game for personality profiling stems from the fact

8

www.manaraa.com

that traditional personality tests may have some inadequacies [39]. To improve

the accuracy of the results, we suggest that the type of an individual can be

retrieved by using events or situations derived from the software domain instead

of using the conventional MBTI questionnaire. Kaluzniacky’s words eloquently

support this: “Eventually, perhaps an actual IT personality diagnostic instru-

ment could be developed containing only questions with an IT work context, but

paralleling closely the questions in the MBTI itself.” [40, pp. 55].

1.3 Research Objectives

The first part of this research proposes an empirical approach to investigating

the relationships among the hypothetical latent constructs1 based on the fac-

tors2 that are affecting software development productivity - a technique that

can be used to evaluate the conceptual propositions with respect to the accu-

racy of data collected. First, we hypothesize the relationships between several

social and economic determinants identified in the literature potentially affect-

ing the productivity of software development. Based on the identified factors,

we build several advanced models, and test them with data collected from a

software development organization. Next, we analyze these models by using

a series of statistical techniques such as factor and path analysis. Moreover,

based on the data collected, in the second part of this assessment, we analyze

the impact of software roles and team constructs on the latent factors affecting

software development productivity. Thirdly, we develop a game-based approach

to portray the personality traits of a team of practitioners on a psychometric

scale, and quantify the personality traits to understand the compatible traits

and to maximize the productivity of software development teams by building

better team configurations.

1A conceptual variable that can not be either observed or measured directly.
2To measure and present a latent construct a set of observable indicators are captured.

9

www.manaraa.com

The objectives of the research are as follows:

Objective 1: Measure the relationships among several productivity

factors and their associations with the latent constructs (i.e. pro-

ductivity, social productivity and social capital) as identified in the

literature through a confirmatory factor analysis model.

Objective 2: Explore the impact of teams and software develop-

ment roles on productivity, social productivity, and social capital.

Objective 3: Build a game-based MBTI-like survey instrument

specific to the software engineering domain, which can reveal and

illustrate software practitioners’ personality characteristics.

1.4 Research Questions and Hypotheses

In response to the issues highlighted above, in this section, we develop a list of

research questions, which guide the research. All of the proposed hypotheses

are used to evaluate our conceptual propositions with respect to the empirical

data collected. We seek answers to our research questions by analyzing the data

by using systematic and rigorous approaches that are specifically tailored for

this study.

Research Question 1: Can we quantify productivity by using a

set of indicators and with the latent constructs (e.g. social capital

and social productivity) that are potentially affecting productivity?

Research Question 2: Can a positive correlation between produc-

tivity, social productivity and social capital be measured for software

development?

To date, as it is qualitative in its nature, software productivity as a notion has

been found hard to measure [10]. In the light of this argument, we hypothe-

size a model of productivity in terms of social productivity and social capital.

10

www.manaraa.com

Ultimately, the goal of the first research question is to identify the relation-

ship between latent variables that we construct and the observable variables

for each latent construct that was found in the literature. The second research

question seeks a correlation between two latent constructs: productivity and

social productivity based on the identified indicators. This part of the research

is concerned with identifying the relationship between productivity and its po-

tential aspects, and hence the first hypothesis has been developed to support

this endeavor.

To seek answers to these questions, we have established and formalized our first

hypothesis guided by our research agenda.

Hypothesis 1: There is a significant correlation between the fac-

tors affecting software development and the productivity of software

development.

The second set of research questions intend to uncover the ways to improve team

productivity using appropriate parameters such as the actual and ideal size of a

team for better productivity, the years a practitioner spend in a company, years

of experience. Furthermore, we seek out a significant relationship between these

variables, our latent constructs and the roles that practitioners are assigned

during the course of the development activities.

Research Question 3: Can we observe a relationship between roles

of software practitioners and the observed team productivity?

Research Question 4: Is there any empirical relationship between

social capital and identified variables to measure the variations in

software team productivity?

The second hypothesis relies on the argument that our hypothetical constructs

such as social capital are related with the identified variables that are potentially

affecting the productivity of software development. To seek answers to these

questions, we have established our second hypothesis:

11

www.manaraa.com

Hypothesis 2: There is an observable relationship among the per-

ceived team productivity, roles and our hypothetical (latent) con-

structs of software productivity

The next group of research questions aim to facilitate a game-based approach to

personality traits identification of software practitioners. The expected achieve-

ment here is to find techniques to identify the personality traits with a game-

based approach. Consequently, the goal is to empirically understand the soft-

ware team structures in terms of their personality traits so as to gain an ability

to predict effective and productive team formations. To this end, we should

be able to visualize the software teams with respect to practitioners’ person-

ality types and explore their structures. For example, by investigating and

visualizing the social structure of a team, (i) personality characteristics of the

participants can be identified, (ii) the overall personality of a team could be

analyzed, (iii) the outcome of the interaction of different practitioners can be

outlined.

In order to understand the research problem, we suggest that two questions

need to be asked:

Research Question 5: Can we reveal the personality traits of

software practitioners by using a context specific, game-like profiling

method?

This question is about profiling the personality characteristics of software prac-

titioners by using a novel technique, i.e. game playing.

Research Question 6: Can we build a visualization instrument to

illustrate software team personality types?

At this point, the following question should be asked: Does revealing the per-

sonality characteristics of the participants have a positive impact on building

effective team configuration? Therefore, the previously known productive team

formations should be investigated for specific patterns of personality type com-

bination or constraints. To examine the overall personality trait of a team,

12

www.manaraa.com

the present study suggests illustrating the traits of individuals on a software

development team on a graph using a novel form of visualization.

Hypothesis 3: Personality characteristics of individuals in soft-

ware development teams can be revealed and illustrated by using a

context specific game-based profiling technique.

Based on a knowledge-based production economy, we consider that the pro-

ductivity of software teams is significantly affected by personality traits of its

members. Consequently, the third hypothesis states that an empirical analysis

is necessary to reveal the personality types of individuals and single out the best

possible combinations to understand effective team configurations. To this end,

the team design space should be expanded from technical aspects to include the

social influence. The goal here is to travel beyond the capabilities of current

team building methods especially designed for software teams.

The third hypothesis suggests that adopting a human-centric view as a comple-

ment to existing process focused approaches has benefits. We envision that if we

illustrate the personality traits of a software development team as a whole, to

a certain extent, we can identify team personality characteristics, which could

be useful for understanding effective team structures. Secondly, among others,

we shall seek answers to questions like “Are the individuals gravitate to specific

roles based on their personality traits?”

1.5 Organization of the Thesis

The overall structure of the study takes the form of five parts and ten chapters.

The first part consists of two chapters. Chapter 1 is the introductory chapter.

It presents the motivational problem, thesis objectives, and research hypothesis.

Chapter 2 gives a preliminary background about the definition of the process,

models and software process improvement.

The second part includes Chapter 3, which briefly reviews the research methods.

It outlines the mixed-method research methodology, and justifies the research

design, which will be followed by the sections on the existing literature of case

13

www.manaraa.com

study, structural equation modeling, focus group study, grounded theory, and

game playing as a research approach. Lastly, it details the research processes

for two industrial case studies.

The third part begins by laying out the theoretical dimensions of the research

in the form of theoretical contributions, which are presented in three chapters:

Chapter 4 reviews the theory of games in software engineering literature and

mechanism design. It continues through an abstract game model. Chapter 5

describes the social and value dynamics of software engineering that includes

a review of software ecosystems, software artifact, productivity, value, social

productivity, and social capital. Chapter 6 surveys the roles, personality traits,

and their applications in software engineering research.

The fourth part is related to practical (empirical) contributions, and the data

collection processes undertaken during the course of this research. It presents

the empirical findings of the two industrial case studies and their data analy-

ses. Chapter 7 starts with the first case study for identification of the factors

affecting software development productivity, and the impact of teams and roles

on the social constructs. Chapter 8 represents the second case study about a

game for revealing the personality types of software practitioners in order to

illustrate software team structures.

The fifth part includes two chapters: Chapter 9 provides discussions and lim-

itations including a multi-view discussion about the results drawn upon the

entire thesis, tying up the various theoretical and empirical strands, and finally

Chapter 10 summarizes the implications and contributions, and discusses the

possibilities for future research.

14

www.manaraa.com

Chapter 2

Background

2.1 Introduction

This chapter starts with a brief introduction to the notion of software develop-

ment process. It continues with surveying software process models particularly

focusing on spiral and WINWIN spiral models. Next, it details the concept of

software process improvement, and reviews ISO/IEC 12207 and agile methods.

The chapter concludes with a chapter summary.

2.2 Software Development Process

In the field of software engineering, various definitions of software development

process can be found. Although differences of opinion still exist, there appears

to be some agreement that a software process refers to a set or order of orga-

nizational activities (sometimes as a workflow) constrained with entrance and

the exit criteria by man, machines and methods [41–43]. In addition, Feiler

and Humphrey [44] consider the software development process as a set or se-

quence of steps followed to reach a defined goal, whereas Erdogmus [45] claims

that a software process should be a set of patterns or activities compiled to

find solution to a series of software development problems. ISO/IEC 12207 [46]

defines the software development process as a “set of interrelated or interacting

activities, which transforms inputs into outputs”, where the standard embodies

15

www.manaraa.com

the process as an outcome based instrument that should be beneficial to the

stakeholders, Therefore, it should either finalize with an artifact production,

or a change in state or, a solution to one of the designated limitations such as

objectives, requirements.

A software development process explains the methods and procedures, in which

organizations and individuals have to follow to create software products and

services [47]. Ultimately, the goal of a software process is to provide a roadmap

for the production of high quality software products that meets the needs of

its stakeholders within a balanced schedule and budget [48]. It concentrates

on creation and maintenance of tasks and activity structures rather than the

output or the end product. Therefore, a typical software process should aim to

solve the potential and future problems of software development with respect

to planning and budgeting. In the context of this thesis,

A software development process is considered as the coor-

dination of structural social activities (e.g. management,

production and maintenance) coupled and constrained with

a set of individuals’ (i.e. participants who perform the ac-

tivities) roles and skills for producing software artifacts in

a predefined productivity level.

Despite the fact that sometimes it is not explicitly defined, all software devel-

opment organizations use a form of process based on their beliefs, values, goals,

or organizational skills [49]. A broad definition of software development process

should encompasses development, deployment and maintenance of a software

product, which should include organizational structures and policies (e.g. task

definitions), human activities, technologies, and product functionalities [50,51].

A meta-model for the abstraction of a software engineering process, its com-

ponents, and a life-cycle model adopted from Unhelkar [52] is illustrated in

Figure 2.1.

16

www.manaraa.com

Figure 2.1: A Meta-Model for Software Engineering Process.

2.3 Software Process Models

Typically, a process model is used to refer to the activities of development

and the ways to control the software product by understanding the steps taken

throughout a process [17]. It represents an abstract representation of a process

including the definition of a set of states or a sequence of activities that are

created by rendering descriptions of the tasks of development, conceive their

relations, and define the resulting outcomes [44].

Over the past few decades, a software process model and a life cycle model have

been confused. However, Acuna et al. [3] resolve this confusion: The life cycle

usually represents the steps that a software product should evolve through,

which should be specific and organization dependent, whereas a process model

is centered on the tasks or the activities performed for managing, developing

and maintaining software systems rather than dealing with the inputs and the

outputs of the production, and hence it should be general and project dependent.

Many different variants of development models and methodologies have been

proposed. Conventional depiction of a software process model includes the

waterfall model [53], the iterative enhancement model [54], prototyping devel-

opment model [55], the spiral model [56], WINWIN spiral model [57], and the

agile methodologies including but not limited to extreme programming [58],

scrum [59], and feature driven development [60]. In addition, the International

Organization for Standardization (ISO) has developed the ISO/IEC 12207 [46]

17

www.manaraa.com

standard for software lifecycle processes, which aims to be the standard that de-

fines all the tasks required for developing and maintaining software, but which

does not imply a specific lifecycle model. Instead, processes that are defined

by this standard need to be outlined into a development model, and should be

compromised within the organization [61].

2.3.1 Spiral Model

Boehm [56] proposes the idea of a risk-driven development and management

model - the spiral model, which continually iterates over a series of development

methods instead of a code-oriented or a document-driven approach. As a de-

velopment process model, one of the main distinguishing characteristics among

the other models is its aim to focus on development strategies dealing with

project risk factors (e.g. prototyping is used as a method for mitigating the

software development risks) [17]. In particular, it highlights the risks encircling

software development and investment decisions, which are vitally important for

development of large scale software and systems [62].

Protype 3 Protype 2

Operational
Protype

Simulations
Models Benchmarks Concept of

Operation Software
Rqts.

Rqts.
Validation

Design Validation
& Verificaiton

Detailed
Design

Unit
Test

Integration
and Test

Implemen -
tation

Software
Product
Design

Acceptance
Test

Develop-
ment Plan

Integration
and Test

Plan

Rqts.Plan
Life Cycle

Plan

Evaluate Alternatives;
Identify, Resolve Risks

Risk Analysis

Risk Analysis

Risk Analysis

Determine
Process
Objectives,
Alternatives,
Constraints

Evaluate Process
Alternatives;
Identify, Resolve
Process Risks

Develop, Verify
Next-Level
Process Plans

Commissioned
Partition

Determine Objectives,
Alternatives, Constraints

Plan
Next Phases

Develop, Verify
Next-Level Product

R
A

Protype1

Progress
Through

Steps

Cumulative Cost

Review

Figure 2.2: The spiral development model

18

www.manaraa.com

Boehm created the original spiral model to include the aspects of earlier process

models (e.g. waterfall, iterative, prototyping), creating a whirling spiral that

supports the changing nature of products over time as depicted in Figure 2.2.

The loops of the spiral represent different phases (Boehm’s task regions); (i)

improving developer and customer communication, (ii) planning for resource

allocation, (iii) identifying the risks, and (iv) prototyping the application (v)

building, testing and installing releases, (vi) evaluation of the software prod-

uct [62]. Each spiral starts with identification of the goals for a part of the

software, and continues with investigation of alternative methods (e.g. buying

an off-the-shelf product or a module rather than developing), and finally, if

necessary limitations of the alternatives are investigated to decide on a newer

strategy [43].

The vision of dealing with volatility in software requirements by identifying the

risk factors in early stages of development favors the spiral development as an

important methodology especially for developing large software systems. Most

importantly, it allows the software practitioners to develop a prototype at any

stage regarding their needs [62]. However, the spiral model is not frequently

used as its predecessors because it certainly requires hands-on experience on

risk assessment and management.

2.3.2 WINWIN Spiral Model

Boehm [57] improves the spiral software process model, giving major considera-

tion to stakeholders’ communication, their goals and negotiation activities. To

this end, he incorporates the spiral model with the management Theory-W. A

management theory aims to make all stakeholders a winner by assuming each

stakeholder pursues satisfactory agreements (i.e. win conditions) [63]. The idea

of stakeholder negotiation aims at balancing between functionality and perfor-

mance of software over cost and delivery times [64]. This version of the model

determines goals, limitations and alternative solutions, the crucial milestones

(anchor points) of software projects, success-critical stakeholders [14], and set-

ting up some wining conditions for them [65].

19

www.manaraa.com

5. Define next level of
product and process -

including partitions

2. Identify Stakeholders' win
conditions

1. Identify Next
Level Stakeholders

6. Validate Product and
process definitions

3. Reconcile win
condition. Establish

next level objectives,
constraints,
alternatives

4. Evaluate
product and
process
alternatives .
Resolve Risks

Figure 2.3: The WINWIN spiral development model

The WINWIN spiral model is based on a series of negotiation activities starting

in each spiral. To achieve a win-win situation, multiple communication pairs

among the stakeholders are configured in the following steps: (i) identification of

the success-critical stakeholders, (ii) detection of the win-win cases among these

stakeholders, (iii) bargaining among the stakeholders for win-win situations

for revealing the satisfactory conditions, (iv) “value-based monitoring and the

control of win-win equilibrium through out the development process” [14] (pp.

139). Furthermore, the successful results from these steps most likely produce

a win-win result (see Figure 2.3 for a illustration of WINWIN Spiral Model).

The WINWIN Spiral Model suggests that the project specifications and the

decision boundaries should be very flexible (e.g. based on the stakeholder de-

cisions a software module can be bought, or alternatively a prototype may be

developed). Moreover, even the process model could be changed by stakeholder

negotiations (e.g. from waterfall to iterative) [62]. One important contribution

of this model is that it addresses the negotiation of stakeholders and promotes

cooperative teams at software organizations.

20

www.manaraa.com

2.4 Software Process Improvement

The field of software process improvement (SPI) is established as an engineering

management approach. It stems from both software engineering domain and the

field of management information systems [66]. Software process improvement

can be defined as a set of methods or bunch of activities organized to improve

the efficiency of software practices [3]. This improvement is actually realized

by the application of scientific techniques to observe the improvement progress

in a process, services and products [67]. One of the main goals of improvement

process is to understand the underlying working mechanisms of an organization

(e.g. business value creation activities) and make the organization more efficient

by; (i) concentrating the right activities that the organization wants to progress

in (define a process), (ii) creating tools or methods to help the organizations or

individuals to do these things more efficiently (asses the process), (iii) observing

the ways to improve (refine the process) in a period of time while in progress [49].

The continuous improvement cycle is based on the scientific method. It was

first introduced by Alhazen “as a systematic observation of a phenomena and

analysis of data relation to a theory” [68, pp. 139]. Later, it was westernized

as the Shewhart Cycle [69] that has the following states: Plan, Do, Check, and

Act (PDCA). This control circle continues by amending and merging with the

previous information. The notion of improvement oriented quality management

was used by Deming, which was developed for the Japanese industry. Further-

more, Humphrey [41] claims that the techniques that Deming envisioned for

continuous process improvement for Japanese industry are totally applicable to

software environments. However, evidence suggests that unlike industrial pro-

duction, the techniques of a process and a product improvement cannot that

easily be applied to the software development and production processes [43].

Although, in practice, tailoring a software process is a complex task especially

for a specific software project, many software development organizations report

several benefits of using software process improvement and benchmarking tech-

niques in their practices, for example, by following a guideline such as CMMI

(Capability Maturity Model Integration). As introduced by Humphrey [41],

21

www.manaraa.com

CMMI recommends a series of improvement efforts for achieving the capability

of defining maturity levels. It is a model for assessing an organization’s software

processes for determining maturity (i.e. level of quality) of the software pro-

cesses. CMMI can be enacted as a roadmap, which relies on the workable defini-

tion of process and the concept of improving organization [70]. As in manufac-

turing environments, a tested and well-understood process will certainly bring

better quality than an uncontrolled one. In order to overcome certain software

process improvement problems, CMMI suggests to form a learning organization,

which will establish a landscape of a continuous improvement [71]. IDEAL is an

acronym (Initiating, Diagnosing, Establishing, Acting, and Learning) for each

phase of the process improvement lifecycle model [61]. As an alternative to

Shewhart cycle, it has been created for assisting CMMI. The main objective for

an organization is to follow the guidance (i.e. recommended practices) wherein

these process areas are designated based on goal-practice structure [70]. CMMI

can be used to program, clarify, execute, deploy, measure, and improve the

processes in an organization.

ISO 9000 defines quality standards, which are generic and applicable to any

(software) development organization as high-level quality expectations as well

as to any other production environments [72]. It clearly supports the usage of

the PDCA approach. ISO has developed international standards for software

process assessment, called ISO/IEC 15504 (Software Process Improvement and

Capability Determination) [73], which helps to define process maturity levels for

processes from the very beginning level through well defined and documented

stage. It is intended to be used in three different ways; (i) capability determi-

nation of software suppliers, (ii) process improvement, and (iii) self assessment

of an organization for its ability to realize a software project [74,75].

22

www.manaraa.com

2.5 ISO/IEC 12207 Software Life-cycle Model

ISO/IEC 12207 [46] is an international standard for software lifecycle processes.

Without providing details of how, it furnishes a comprehensive set of process

activities and task structures for administering and engineering the activities

of the life cycle of a software system. It is based on three main process groups

including: (i) primary lifecycle processes, (ii) supporting lifecycle processes, and

(iii) organizational lifecycle processes. The structure of ISO/IEC 12207 relies

on the qualitative definitions of the processes, which are informally described

(i.e. no details about the implementation of tasks or activity performance).

In fact, a software development organization should select a lifecycle model to

detail the implementation of these activities.

Such a model equips the stakeholders with tools, which may help them to

define the purpose and outcome of a process from a functional viewpoint [3].

By its well defined terminology, this framework enables a software organization

to support the organizational progress by defining their partial efforts with its

predefined documentation standards, which can be considered as a common

language for efficient communication among the participants of the software

development process.

In addition, ISO/IEC 12207 is based on both the principles of system engineer-

ing and total of quality management [76]. A software organization is encour-

aged to customize the required subset of processes, which may be needed for

their goals. The current version of this framework defines 43 different software

processes [76] and the primal process features activity (tasks), artifacts and

roles. Subsequently, it advocates the importance of task and role interactions.

ISO/IEC 12207 not only aims at the improvement of the proficiencies of the

stakeholders but also the software organization itself. It sets a safe ground

for creating a social environment and managing the interactions among the

stakeholders [3].

Processes are composed of activities, which are basically formed from set of

tasks. The tasks are structures designed to process the resources into outcomes

(see Figure 2.4) [76].

23

www.manaraa.com

Figure 2.4: The Structure of a Process

2.6 Agile Methods

As the conventional software development models cannot cope with changing

requirements efficiently, a group of methods called agile methods have emerged.

They collectively promote the notion that it is unnecessary to do a detailed

system design at the early stages of a project [77]. From an agile perspective,

an early release helps to improve the design quality, which means testing for

early defect detection and elimination. The very basic idea of agile methods is

also supported by Humphrey’s Requirements Uncertainty Principle: A software

system cannot completely be specified in terms of its requirements until it is

tested by its users [78].

Based on the fact that agile methods share the iterative development model

as an underlying mechanism [79], Cockburn [80] clarifies that the aim for all

agile methods is to find out (light and adequate) rules of communication and

coordination to moderate the various behaviors of project.

The Agile manifesto [81] (i) prioritizes people and their interactions over tools

and processes (cooperation with close communications) (ii) improves the de-

sign quality continually by the feedback from users (product flexibility), (iii) re-

sponds to a change rather than following a strict path of development with small

releases and rapid production and feedback cycles (adaptability for changes),

(iv) highlights the importance of working software over extensive documenta-

24

www.manaraa.com

tion; therefore, methods should easily be learned and altered (method modifia-

bility) [81]. In that regard, a group of researchers such as Pekka Abrahamsson,

Barry Boehm named them as light-weight methods because they are not insti-

tutionalized with a complex form of process [82]. In addition, agile methods

emphasize the importance of verbal communications and tacit knowledge in

team relations, and they also aim to reduce the perceived need for extensive

documentation [82]. Highsmith and Cockburn [83] claim that the novel thing

about the agile philosophy is that it highlights the importance of people and

their communication processes for a successful project completion. Miller [84]

defines agile methods as incremental steps of methods that are (i) collaborative

and people oriented for lowering the cost of communication, (ii) modular in

terms of implementation, (iii) iterative with fast testing cycles with less bu-

reaucratic activities, and (iv) adaptive for mitigating new risks.

Unlike traditional methodologies where the extent of a delivery is identified by

the time needed, agile methods use time-boxed iterations (i.e. usually same

length iterations based on scope and quality of working functionality) [85]. In

particular, this means the project risks are mitigated by defining the scope in

a limited time frame instead of enabling the scope to create a release length.

Agile iterations encircle all phases that are required to deliver the product or a

part from the product line of development.

25

www.manaraa.com

2.7 Chapter Summary

This section provided a general discussion on the basic principles and concepts

of the software development process models and methods. It started with the

definition of software process and briefly explained the selected process models

and the agile methodologies, and several paradigms of software process improve-

ment. The WINWIN spiral model was the first software development model

that highlighted the importance of a social equilibrium among the stakeholders

from a value-based point of view. Therefore, we considered this model as an ini-

tial approach that provided the benefits of investigation of the social preferences

for better software development productivity.

Starting from a philosophical viewpoint, the next chapter presents the research

processes and methodologies chosen for the study, and it further details the

techniques and methods used for data collection.

26

www.manaraa.com

Part II

Research Methodology

27

www.manaraa.com

Research Paradigm

The second part of the thesis starts with a brief overview of quantitative and

qualitative research methodologies, and continues with detailing mixed method

research. Next, the reasons regarding selections of mixed-methods are dis-

cussed. Not only the case study approach but also all selected approaches for

the study are surveyed. Lastly, this part closes with the two procedural models

of our industrial case studies.

28

www.manaraa.com

Chapter 3

Research Design and Methodology

3.1 Introduction

The purpose of this chapter is to discuss our research philosophy with respect

to the two schools of thought where we introduce the techniques and the instru-

ments utilized in the service of our research goals. This chapter presents the

research approach, design, and methodologies to address the research problem

(as outlined in the first Chapter) behind them, followed by a justification of the

research methodology and the adopted research method are presented. Conse-

quently, the latter two subsections review the structural equation modeling and

grounded theory. The next section introduces the research design for the first

part, and the consequent section details the research design for the second part

of the study.

3.2 Research Philosophy

The research philosophy is the notion of belief concerned with development of

the knowledge in which data regarding the phenomenon is collected, analyzed

and further processed [86]. Independently from the researcher, the positivist

research paradigm considers a phenomenon is measurable by using statistical

instruments such as surveys, and observable by experiments [87], while the

interpretivist approach focuses on the researchers viewpoint for understanding

29

www.manaraa.com

the social reality [88] other than seeking for generalizable truths.

Previous studies have considered both positivist and interpretivist philosophies

to have an equal importance on the world of scientific research [89], and there-

fore they saw them complementary to one another. Not surprisingly, perhaps,

quantitative research is structured on the positivist philosophy, which accepts

the reality is static and observable from an individuals’ viewpoint while qual-

itative research approaches are usually related with interpretivist school of

thought, which states that there are a number of alternative interpretations

of reality that accommodates the scientific knowledge itself [90].

Gallier [91, p. 149] shows the taxonomy of research methodologies with respect

to their qualitative or quantitative nature as in Table 3.1.

Positivist Interpretivist

Lab Experiments Subjective/Argumentative
Field Experiments Reviews
Surveys Action Research
Case Studies Case Studies
Theorem Proof Descriptive/Interpretive
Forecasting Future Research
Simulation Role/ Game Playing

Table 3.1: A Classification of Research Methodologies

Although there are several different research methodologies used in software

engineering research [92], all fall into two main categories: quantitative research

(e.g. survey research, experiments, and simulations) and qualitative research

(e.g. grounded theory, ethnography, action research) [93].

3.2.1 Qualitative Research

Based on the idea of seeing the human as an instrument and considering their

experiences, qualitative research is a naturalistic approach that aims to investi-

gate participants’ actions and words for interpretive patterns of meaning [94]. It

studies mental attitudes and social behaviors frequently recorded as information

from the participants’ own words and definitions, and classify them from their

natural work settings or environment [95]. Qualitative researchers use tech-

niques like interviews, individual experiences, case studies and focus groups

to capture data about the values and emotions of people for investigative ob-

30

www.manaraa.com

servations. The collected data can be documented in a contextual framework

for conducting a closer observation of words and view of the participants and

further inspection [96]. Typically, qualitative methods are inductive in nature;

they are used to investigate a new or unexplored phenomena or sometime to

generate a theory. In particular, it is beneficial in the cases where researcher

needs interaction with participants to seek in-depth answers or research that

requires group interactions (e.g. interactions between both respondents and re-

searchers). However, typically qualitative studies are conducted in small groups

or with a limited number of participants; hence, the results in many cases are

not generalizable [97].

3.2.2 Quantitative Research

Quantitative research is the study of methods and techniques for an empiri-

cal investigation of a phenomenon by collecting and analyzing numerical data

using mathematical methods [98]. The goal is to quantify the interrelations

between different types of variables (e.g. independent, dependent) using sta-

tistical techniques [99]. Quantitative research is corroborative and generally

based on a conventional and a systematical process to gather data, which de-

scribes the information by cause and effects relations in a rigorous way so that

a number of facts and analysis results can be produced [100]. Based on the

assumption that the world operates with a set of physical and natural laws, a

quantitative researcher aims to test a hypothesis and sometimes conducts stud-

ies to observe the cause-and-effect relationships among variables with empirical

investigations [99]. In some cases, the data required for the analysis is not avail-

able in a suitable form but is transferable to survey instruments. In a positivist

approach, Verschuren [101] argues that quantification relies on the separation

of social reality in terms of units and variables such as research units (e.g. soft-

ware organization), observation unit (e.g. software practitioners), and analysis

units (e.g. research material transformed into results). Table 3.2 indicates the

differences between qualitative and quantitative approaches in terms of several

characteristics adopted from VanderStoep and Johnson [90, pp. 7].

31

www.manaraa.com

Characteristics Quantitative Qualitative

Data Types Numbers Words
Research Questions How many? How much? How? Why?
Data Collection Methods Surveys Interviews, observations
Sampling Type Statistical Sampling Snowball or quota sampling
Sample Size Large is preferred Small is preferred
Goal Prove/Verify Discover/Explore
Generalizability Generalizability is a goal Generalizability is not a goal

Table 3.2: Qualitative versus Quantitative Research

3.2.3 Triangulation and Mixed Methods

By using pragmatism in its philosophical underpinnings, a blending of different

qualitative and quantitative approaches (or their variants) as a technique to

improve the validity of research findings is called mixed method research [102].

While investigating the same phenomenon, there could be a number of advan-

tages of using a hybrid approach. Firstly, it has the potential to investigate

situations where other approaches with a specific philosophical viewpoint are

constrained in a single perspective. Secondly, a mixed method strategy is useful

for dealing with the weaknesses of either quantitative or qualitative methods

that are employed where potentially valuable conclusions can be obtained from

their proper combinations [100].

Triangulation [103] is one of the most well-known mixed method design strate-

gies, which relies on the fact that it is vital to view a research in more than

one standpoint to minimize the bias. To deal successfully with intrinsic bias

of a single method, observer or a theory, this approach advocates that multiple

types of data and methods can support hypotheses, incident or events [104]. In

other words, the term triangulation is a metaphor, which describes the use of

multiple methods in a single research: a combination of two research traditions,

theories, data sources, methods or techniques to study a research question or

to measure a single construct [105].

Tashakkori and Teddlie [106] highlight three reasons for conducting a mixed

method research: (i) it allows both confirmatory and exploratory research ques-

tions to be answered by tailoring the suitable features of each methods, (ii) it

enables researcher to investigate more complex phenomena in the field because

32

www.manaraa.com

of its rich input of resources, (iii) it represents different philosophies in a single

study which allows us to conduct more comprehensive empirical study.

In conclusion, a mixed method research approach can be beneficial for taking

a pragmatic approach as a guiding mechanism for the research efforts. For

example, during the research process, if a hypothesis is needed to be tested,

quantitative methods are used. In contrast, if meaning is needed to be investi-

gated in depth, qualitative methods are preferred. A mixed method approach

can be exploited (i) to improve the analysis by using a different viewpoint, and

(ii) to investigate the research problem in-depth to withstand any opposition

more effectively [100].

Andrew and Halcomb [107] suggest six strategies for conducting mixed method

research namely (i) sequential explanatory, which usually seeks to explain quan-

titative findings by using a qualitative phase, (ii) sequential exploratory design,

which begins with a qualitative phase through a quantitative phase (i.e. suit-

able when the subject matter is not well-known), (iii) sequential transformative

design, in which data collection process is guided by a previously specified the-

ory (e.g. a type of data collection activities such as surveys are followed by a

different types of data collection activities such as interviews), (iv) concurrent

triangulation design, in which different types of data is collected simultaneously

to approve each other, (v) concurrent nested design in which one method of data

collection governs the other while both data types are collected concurrently,

(vi) concurrent transformative design, which is similar to a sequential trans-

formative design. However, in this approach, the qualitative and quantitative

data are collected in parallel [107].

33

www.manaraa.com

3.3 Choice of a Research Methodology

A research methodology is a combination of several methods, assumptions,

models, techniques which constitutes the procedures for collecting and analyzing

the data, measuring progress and research success in order to solve a research

problem [108]. The selection of a research methodology is derived from several

factors from previously conducted research and existing theories to the field,

time, resources, industrial accessibility, the known and unknown variables, and

lastly research goals and questions [100]. To validate the results, both numeric

and textual data required by the research should be collected. The mixed-

method research (i.e. triangulation) is an invaluable technique, which compares

and contrasts findings and further confirm results with empirical reality using

the advantages of different approaches [109].

Seaman [110, pp. 571] provides an in-depth analysis of qualitative research

showing its relevance to empirical software engineering research, and she claims

that “nearly any software engineering issue is best investigated using a combina-

tion of qualitative and quantitative methods. Several scenarios are described [in

this study] illustrate different ways of combining these research methods.” Such

an approach provides a comprehensive perspective about a research problem,

which can be seen as a way to bridge the gap between different philosophical

stances. However, the mixed method research consumes more resources and

time, as well as greater budget [111].

Sequentially blending qualitative and quantitative methods, this study employs

a mixed-method research strategy. In general, there are several reasons for

the selection of mixed method research for this study: (i) to avoid bias prob-

lems either from a single data source or to reduce the bias introduced by the

researcher, (ii) to increase the rigor of the findings by using an adequate combi-

nation of perspectives with different advantages, e.g. using methods to validate

a research question from different perspectives.

In particular, we select a mixed method approach for variety of research-specific

reasons, which can be grounded in the applied nature of software engineering.

Firstly, we derive our research questions to formulate a contextual understand-

34

www.manaraa.com

ing of the phenomena by direct observations from the field to support our

theoretical claims. Consequently, a mixed-method approach enables us to use

both the software engineering literature and our industrial contacts to con-

struct a multi-dimensional perspective. Secondly, as we assess hard-to-measure

constructs (e.g. productivity, social capital), this technique allows us to be

pragmatic rather than ideological as we are conducting a research to deal with

complex socio-technical issues in a complex human-centric environment. There-

fore, it is crucial to follow a stepwise method: (i) to discuss our findings with

the software practitioners, and (ii) to gain benefit from their industrial expe-

riences. Thus, it is evident that a mixed-method approach is suitable for this

study.

To strengthen the rigor and the validity of its results, this study used method-

ological triangulation with a sequential transformative design strategy. To pick

several advantages obtained from both qualitative and quantitative approaches,

a mixed method research was found adequate for investigating the aspects of a

complex phenomena identified by our six research questions.

To build our research methodology, in this study, we use a variety of qualitative

and quantitative methods including case studies, surveys, focus groups, statis-

tical techniques such as structural equation modeling, role/game playing and

quantitative analysis of our game results. In order to substantiate the credibil-

ity of our findings, we suggest a number of pairings of the research methods and

utilize multiple research perspectives to interpret the results. In addition, we

used semi-structured interviews, which is a data collection technique allowing

freedom to follow the emergent themes in a conversational way, and expert re-

views as an evaluation technique in which experts put themselves in the position

of novice users to identify problems [112].

This study uses a sequential exploratory design approach for combining the

theoretical findings with empirical data collected from the target population

where a qualitative phase is followed by a quantitative phase. As a part of our

research strategy, additionally, in-depth qualitative follow up studies such as

validation interviews were also conducted after a quantitative analysis.

35

www.manaraa.com

Figure 3.1 shows a schematic description of the overall research design. The

three steps of the design can be identified as (i) requirements of this research

including current context of the research, research questions, literature reviews,

and the theoretical models based on these information, (ii) industrial imple-

mentation, which includes two case studies that use a mixed-method approach

as discussed above, (iii) empirical evaluation as a part for both case studies in

order to inspect the significance of the results. In addition, Figure 3.2 illustrates

the theoretical and practical contributions, and most importantly the empirical

contributions grounded in software development landscape whereas Figure 3.3

and Figure 3.4 detail the rigorous steps for conducting the case study I and

case study II.

In the following part of this section, we overview selected research methods.

3.3.1 Case Study Research

A case study is a multi-dimensional activity that is frequently used for seeking

answers to scientific inquiries. It is a classical approach used since the early days

of scientific research usually when one or multiple instance of a phenomenon

is investigated in its natural environment at a bounded time [88]. While the

quality of the results and the combination of its components vary, case study is

found to be an appropriate methodology for conducting empirical research in

software engineering landscapes [113].

However, a basic requirement is that the researcher should study the case in-

depth to collect information from individuals or organizations. According to

Creswell [114], “Case studies, in which the researcher explores a single entity

or phenomenon (the case), bounded by time and activity (an event, a process,

an institution, or a social group) and collects detailed information by using a

variety of data-collecting procedures during a sustained period of time.” [114, pp.

12]. To conduct a successful case study research, the site that the case study is

conducted should be accessible and the key people and the required resources

need to be available [115]. Ultimately, a case study does not require a researcher

to control over the events and situation as in action research [116].

36

www.manaraa.com

Case Study I:
Validation
Interviews

Case Study II:
Validation of the

Game Cards

Developing Research
Questions

Literature Review, Theory
Generation & Model Design

Background & Identification
of the Research Context

Structural
Equation
Modelling

Survey Research

Grounded Theory Game Playing

Case Study I

Case Study II

Empirical Evaluation

Industr ial Implementat ion

Research Requirements

Figure 3.1: Overall Research Design

Yin [117] suggests that a case study should be an empirical inquiry, which exam-

ines a state-of-the-art phenomenon in the real-life situations based on multiple

information resources with unclear boundaries in the given context. In his dis-

cussions about the meaning of a case study as a research strategy, Verschuren

argues: “A case study is a [triangulated] research strategy that can be qualified

as holistic in nature, following an iterative-parallel way of preceding, looking at

37

www.manaraa.com

only a few strategically selected cases, observed in their natural context in an

open-ended way, explicitly avoiding (all variants of) tunnel vision, making use

of analytical comparison of cases or sub-cases, and aimed at description and

explanation of complex and entangled group attributes, patterns, structures or

processes.” [101, pp. 137]. Yin [117] points out six different sources of data (ev-

idence) suitable for case studies; (i) documentation, (ii) archival records, (iii)

interviews (or surveys), (iv) direct observation, (v) participant observation, (vi)

physical artifacts. They can be used as a single source or complementary to

one another. Table 3.3 illustrates the sources of data, their strengths and weak-

nesses adopted from Yin [117, pp. 86] .

Source of Evidence Strengths Weaknesses
Documentation • stable - repeated review • retrievability difficult

• unobtrusive - exist prior to case
study

• biased selectivity

• exact - names, etc. • reporting bias reflects
author bias

• broad coverage - extended timespan • access may be blocked
Archival Records • same as above • same as above

• precise and quantitative • privacy might inhibit
access

Interviews & Surveys • targeted - focuses on case study
topic

• bias due to poor ques-
tions

• insightful - provides perceived
causal inferences

response bias

• incomplete recollection
• reflexivity - intervie-
wee expresses what inter-
viewer wants to hear

Direct Observation • reality - covers events in real time • time-consuming
• contextual - covers event context • selectivity - might miss

facts
• reflexivity - observer’s
presence might cause
change
• cost - observers need
time

Participant Observation • same as above • same as above
• insightful into interpersonal behav-
ior

• bias due to investiga-
tor’s actions

Physical Artifacts • insightful into cultural features • selectivity
• insightful into technical operations • availability

Table 3.3: Six Sources of Evidence for the Data Collection

38

www.manaraa.com

A typical case study can be formed from a single case or from multiple cases

both of which can be based on a holistic (single) unit or embedded (multiple)

units of analysis, and therefore four kinds of case study designs are available:

(i) single-case embedded, (ii) single-case holistic, (iii) multiple-case embedded,

and (iv) multiple-case holistic [117]. The case study is usually constructed as

a tool to connect collected data with initial research inquiry, which allows the

researcher to draw a set of conclusions.

According to Kitchenham [118], the usage of case studies has several advantages:

(i) they can be combined with software engineering activities, (ii) if real projects

are used, there is no need to increase the size because they are already on the

actual industrial scale, (iii) they enable the researcher to asses the actualized

and expected benefits of the progress. Basically, there are four main steps in

a case study: (i) design, (ii) conduct, (iii) analyze, and (iv) draw conclusions.

Finally, industrial case studies are quite important for appraisal of software

engineering instruments and processes to cope with scale-up issues, eliminate

biases, and ensure validity (e.g. internal, external, etc.) from an evolutionary

perspective [119].

3.3.1.1 Threats to Validity

In scientific research, the potential factors that adversely affect the accuracy,

usefulness and quality of results are called threats to validity [120]. These

threats, however, should be addressed in every step of a case study where they

can be classified in four dimensions of validity with the criteria to judge de-

sign quality of a case study based on (i) construct validity: correct operational

measures and constructs should represent the subject matter, which should also

interpreted similarly both by the researcher and the participant [113]; (ii) inter-

nal validity: the conceptual definitions should match operationalization as it was

predicted where there may be other invisible factors affecting the validity [117],

(iii) external validity: the study should provide an extrapolation of the results

beyond the initial study, in which researcher investigates the relevance of the

findings for similar settings and other people [121], (iv) reliability: is the sta-

39

www.manaraa.com

bility of the measuring instrument with which the study should be repeatable

with the actual results [117]. Therefore, the way the research is conducted and

the protocols are followed should be defined precisely. Table 3.4 summarizes

potential threats to validity for the study [113,120,121].

Construct Ability of an instrument (e.g. survey, test, scale) to measure a concept
properly.

Validity • Qualitatively, check if the researcher and the participants have the same
interpretation over the results, e.g. validation interviews.
• Quantitatively, check measures of a construct, e.g. assessing a model with
confirmatory factor analysis.

Internal The design of the research should have internal coherence, strength, and
soundness.

Validity •History effect: An outside situation or a factor may cause a manipulation
over the results.
• Testing effect: Continuous testing may lead to experimental deteriora-
tion.
• Instrumentation effect: Any change in the measuring device during
the study.
• Experimenter or participants effect: The findings of the study can
be biased by participants who aim to assist the researcher and change their
preferences as a result.

External The results of a study could be extrapolated and should be able to represent
the target population.

Validity • A conceptual replication: An alternative study based on an initial
study uses either different methods or measures to test the same constructs
differently.
• A systematic replication: Rigorously change a parameter to observe
findings by alternating a setting or changing a group of the participants.
• College sophomore problem: Using university students for empirical
studies instead of industrial practitioners.

Reliability The measuring instrument should be precise and stable where alternative
researchers could be able to reuse the measurements, methodologies and
data collection protocols.

Table 3.4: Threats to Validity for Empirical Research in Software Engineering

3.3.2 Survey Research

Survey research method uses questionnaires to collect data in a systematic way

from a group of individuals such as organizations, teams, and students [88].

There are two approaches in conducting surveys: (i) a cross-section approach

which gathers data at a single point in time, (ii) longitudinal survey research

which repeats the observation of the data over a period of time [122]. However,

a result of a survey demonstrates an association but not a causality (i.e. a

causal link between variables) [118]. In addition, the results may be considered

as biased if the interrelationships between the population and the number of

respondents are not well known [123]. Although there are no limitations, some

40

www.manaraa.com

researchers believe that a survey research is a quantitative approach [88]. A

survey is a measuring instrument. The responses of a survey represents the

existing opinions of participants on a subject matter, which can be used to

draw conclusions. The questions employed in a survey should be simple, clean

and written without a jargon [99]. To maximize the validity of the results of a

survey, a researcher needs to construct a strong theory, employ a good survey

design and utilize proper statistical tools [124].

3.3.3 Structural Equation Modeling

A family of flexible interrelated statistical techniques (i.e. multivariate, multiple

regression analysis, factor analysis) frequently used in social science studies to

analyze empirical data and test variables and evaluate their network of hypoth-

esized relationships is called structural equation modeling (SEM) [125]. Based

on the patterns of statistical expectation, it is a confirmatory multivariate anal-

ysis technique used to estimate the structural or casual relationship among two

variable types (i.e. observed and latent). SEM models use a collection of si-

multaneous equations based on a combination of observed and latent variables

(hypothetical constructs or factors), which are frequently used by sociology,

psychology research and econometric research [126]. The main component of

a structural equation model is an initial hypothesis, which also includes the

components that may be connected that are assessed by several statistical tests

and if necessary adjusted through modification indexes.

SEM allows the researcher to explore the multivariate relationships that can

be used to test an actual hypothesis, which may theoretically be justifiable by

empirical observations. A typical SEM model usually encompasses the graph-

ical depiction of the correlation patterns based on a set of variables, and is

frequently used for validation of the relationships among the latent constructs.

Although it is a quantitative approach, SEM offers a start from a qualitative

viewpoint; it has the ability to show how the chosen factors or variables are

not only correlated but also interrelated to one other. Therefore, it can be

helpful for observing the relationship among several coefficients. It enables the

41

www.manaraa.com

researcher to assess the effectiveness of a hypothetical model for the sampled

data. In particular, a model based on the combination of regression, path, and

confirmatory factor analysis should be useful for analyzing social factors and

their interdependencies.

In addition, it is sometimes used as an instrument to form a measurement

scale. A typical SEM includes the direct and the indirect associations of vari-

ables that are statistically assessed to identify a relationship between data and

the proposed or hypothetical model. Consequently, the notion of correlation

and covariance is important for a SEM analysis because they signify the pairs

of relationships for a group of variables [127]. Correlation is a tool that defines

the discovered linear relationship between two variables (coefficient of correla-

tion measured in a range of -1 to +1). A positive value indicates that there

is a positive correlation among the variables, where negative values state the

opposite [128]. In fact, SEM is considered as a set of equations used to com-

pute a multiple linear regression model where several factors are calculated

with respect to observed weights [129]. A SEM model can be used for mea-

suring the correlations and covariation among the latent constructs, where the

regression model is designated in the structural part of the model, and factor

analysis model is designated in the measurement model [130, p. 10]. There are

four main steps in a typical SEM analysis; (i) model development (building a

conceptual framework), (ii) path diagram construction (building a representa-

tion of associations), (iii) assessment of measurement model, (iv) assessment of

structural model [131].

A SEM can be specified in several formats such as path diagrams. However,

these figures usually follow de facto standards. A typical SEM model repre-

sents how the researcher relates the hypothetical constructs and the collected

data based on observed variables (illustrated in rectangles). These variables

are derived from a set of questionnaire in a survey tool. To represent these

items, a limited number of graphics are used such as ellipse, which signifies the

latent constructs that are estimated from the observed variables, single headed

arrows, which represent predictive relationships and a double headed curved

42

www.manaraa.com

arrow between two latent variables, which indicates that they are correlated.

Based on the variance-covariance matrix, a good-fitting model designates that

a theoretical or hypothetical construct is consistent with the empirical dataset.

Such a model is useful for examining the relationships of the causal paths of a

SEM model, which can improve the original form [132]. However, sometimes

a model that seems like a good-fitting model may not be a working model.

Therefore, it is important to use several model validation techniques to evaluate

the validity of a SEM model to obtain more conclusive results. A chi-square test,

the comparative fit index (CFI), the goodness of fit index (GFI), the adjusted

goodness of fit index (AGFI), and the root mean square error of approximation

(RMSEA) are the most common fit-indices used in SEM investigations [126].

In addition, sample size is another parameter that affects the validity of a

model [126, 130], where a number of researchers suggest that constructing a

model with no latent variable is somehow more suitable for a limited sample

size.

One of the earliest current fit-indices in SEM research is the chi-square test

statistics. It is frequently used for testing the model fit by investigating whether

a null hypothesis is true or false. Barrett [133] argues that a chi-square test is

enough for investigating the model fit. Although for a large sample of data this

test usually shows statistically significant results, it is still used as a measure of

general model fit to identify whether a theoretical model differs from the sample

variance-covariance matrices calculated from the data [129]. It is affected by the

highness of the correlations, which results in poor fit for the proposed model.

Moreover, the evidence collected from simulation studies confirms the sensibility

of chi-square test in terms of the size of the sample set [134].

The root mean square error of approximation (RMSEA) index is probably the

best-known index for model fitting. Analogous to other fit indices, RMSEA uses

a complexity parameter depending upon the degrees of freedom of a model [132].

According to Browne and Cudeck [135], RMSEA value measured below .05

indicates a good model fit between the observed data and theoretical model,

while values below .08 is considered as a reasonable fit [131].

43

www.manaraa.com

Based on the parameters identified above, we select a set of indices to evaluate

the models constructed in this study, namely chi-square goodness-of-fit test,

ratio of chi-square to degrees of freedom, root mean squared error of approx-

imation (RMSEA), and two other kind of measures known as goodness-of-fit

index (GFI), and adjusted goodness-of-fit index (AGFI). Table 3.5 presents the

descriptions of and thresholds for several indices based on the works of Bagozzi

and Yi [136], Cote et al. [137], and Ping [138], etc.

Fit index Descriptions Cut-offs

χ2 Displays the disagreement
between hypothetical model
and collected data

p < .05

χ2/df As chi-square test is de-
pended on the size of a
sample

2-1 or 3-1

RMSEA Displays the level of fitness
of a model

<.05 good <.08 reasonable

GFI A de facto measure of the
descriptive adequacy of a
model

0 no-fit, 1 perfect-fit

AGFI GFI adapted for degrees of
freedom

0 no-fit, 1 perfect-fit

NNFI Displays the level of im-
provement compared to
null model

0 no-fit, 1 perfect-fit

CFI Shows betterness of a
model fit with respect to a
null model

0 no-fit, 1 perfect-fit

Table 3.5: Descriptions and Cut-offs for the Fit Indexes Adapted from [131]

Lastly, so as to apply SEM properly, the hypothesized measurement model

should be illustrated by a diagram in which measured (observed) variables are

called factors or indicators. In a SEM model, observed variables are represented

in the form of rectangles where latent (unobserved) variables are shown by a

circle and the relationships between these variables are usually shown by arrows.

To achieve a precise measurement result, the indicators that are used to measure

the latent constructs should be validated by using methods such as literature

reviews, and expert reviews.

44

www.manaraa.com

3.3.4 Game Playing as a Data Collection Method

In this subsection, we introduce a novel, game-based approach as a part of our

research method where data is collected by conducting a card game. One of the

goals of these card-based assessments is to understand the relationship between

participants’ perception on an object (e.g. cards, images, etc.) and subjects’

patterns of behavior or sometimes their personality traits.

There are several techniques in psychology used to construct a game-based

approach, which are mostly categorized as projective techniques [139]. For ex-

ample, the associative approach requests the subject to respond to certain cues

such as cards or words by uttering the first thought that comes to mind. Sec-

ondly, a constructive approach requires the subject to complete a task such as

creating a story from the objects shown. Thirdly, in the completion technique,

the subject is requested to finish an incomplete statement or a sentence. Fourth,

in the ordering or sorting technique, the participant is requested to do a sorting

or ordering of objects, cards, pictures, etc. Finally, in the expressive approach,

the participant is asked to express himself or herself freely.

A well-known variant of these tests uses the inkblot technique in which a card

is shown to the subject one at a time and the subject describes what these

cards remind him or her. In modern psychology, similar tests are also used to

understand participants’ social behaviors and personality types. These tests,

for example, may analyze whether answers of a participant are defensive or

argumentative.

3.3.4.1 Our Novel Approach

Depending upon the complexity of tasks and human interactions, in software

engineering settings, a precise computational model for profiling software prac-

titioners is hard to construct. In light of this remark, we propose to gamify

the personality profiling akin to the psychiatric tests. Similar to the psychiatric

assessments or card-based tests used in the field of psychology, in our approach

participants are to answer a set of questions. However, our technique is based

45

www.manaraa.com

on situational context cards1 that are equipped with psychometric questions,

which are derived from several situations captured from the events observed in

the software industry. Grounded on software development concepts, these con-

text cards are used to operationalize our game-based approach where the goal

of the game is to reveal personality types of software practitioners. In addition,

we suggest a systematic approach not only for revealing the personality pro-

file of an individual or a software team but also understanding the personality

profiles of organizations as a whole.

To this end, we provide a new understanding of collecting data: game play-

ing as a data collection method. Instead of collecting paper-based data for a

psychometric assessment, we propose a game-based assessment with more in-

teractive questions for the data collection process. Where we have termed this

novel approach as qualitative simulation: a scenario based information gather-

ing, analyzing, and evaluation method, which relies on a card game component

with a deck of cards to play for the results.

We termed the concept as qualitative simulation for two reasons. First, we

design a game where game like instruments are generally perceived as qualitative

in their nature. Secondly, similar to a simulation, based on real life and context

dependent situations, our approach is likely to operationalize scenarios and

events that can happen during the software development life cycle.

Consequently, we construct a game like approach, which is designed for face

to face interactions. During these interactions, participants’ responses are

recorded. Based on practitioners reactions to those of events, later these record-

ings are analyzed, and interpreted. Furthermore, the researcher plans to use

such an understanding to employ hypothetical events to observe the partici-

pants’ verbal behaviors, and to discover the personality structure of the software

teams.

1Context dependent cards that are designed to store real-life situations.

46

www.manaraa.com

3.3.5 Grounded Theory

To bridge the gap between obtained empirical data and a theory at a conceptual

level, grounded theory was introduced by Glaser and Strauss [140]. It is a

systematic approach for collecting and analyzing qualitative data and present

them using the theory of symbolic interactionism, i.e. an individual’s definition

of a situation that causes an action [89].

Because of its integrated and iterative nature, grounded theory is an approach

that requires continuous interplay between analysis and the data until a theory

emerges [140].

According to Glaser,

“The goal of grounded theory is to [iteratively] generate a theory

that accounts for a pattern of behavior which is relevant and prob-

lematic for those involved. The goal is not voluminous description,

nor clever verification.” [141, pp. 93]

Strauss and Corbin [142] claim that it is easier to understand a phenomenon

when a theory is derived substantially from socially observed situations (i.e.

data) pari passu within the theory in an experiential world. Therefore, grounded

theory allows for exploration of meaning and creates connections to analyze

the understandings of reality for participants in a domain. Grounded theory

acquires constructs by actualizing categories from the raw data by using a

technique called constant comparison [140]. In a grounded theory study, the

theoretical concept is developed and interrelated by breaking the transcripts

(from the interviews) or field notes into categories of meanings from texts,

which are found important by the participants [142], and further by comparing

and contrasting the analysis, so data collection phases are iterative and continue

until a theoretical saturation is attained [140].

Three phases are defined as coding in the process: (i) open coding for build-

ing information categories, (ii) axial coding for connecting subcategories with

categories, and (iii) selective coding for refining the categories around a cen-

47

www.manaraa.com

tral category by building a storyline [143]. In addition, a common technique

used in grounded theory research is called memoing [144], which is an act of

recording thoughts in the form of statements or questions that can be used as

a supplementary material to assist the researcher in building abstractions, that

is generating categories from the raw data.

To sum up, grounded theory is a methodology that promotes the idea of contin-

uous engagement with the empirical findings while segmenting the key thoughts

among the conceptual elements by possible operationalization of coding, com-

paring and memoing of the raw data. Furthermore, grounded theory has been

used successfully in software engineering research (e.g. see [145,146]).

3.3.5.1 Justification for Using Grounded Theory

We built the card creation process based on grounded theory for a number of

reasons: (i) to our knowledge, no study exists in the literature that offers an

inductive approach and therefore allows for the emergence of a psychometric

structure to emerge based on the experiences (or situations) captured from the

individuals in a software development organization, (ii) the grounded theory

analysis is a well-established research methodology, which has sophisticated

guidelines for conducting an empirical research especially beneficial in the fields

such as software engineering partially based on the exchange tacit knowledge

which requires social interaction, (iii) based on the industrial experience of

the researchers, grounded theory promotes the notion of theoretical sensitivity,

which relates the ability of researchers to understand the important elements of

the data and its empirical contributions to theory generation (i.e. card creation)

process. Additionally, during the card creation process, we believe that three-

step systematic coding proposed by Strauss and Corbin [142] is helpful to figure

out what data should be collected during our iterative coding approach.

3.3.6 Focus Group

Focus group is a form of group interview (i.e. researcher-led group discussion)

conducted to capture a content in the research process where participants are

48

www.manaraa.com

asked about their opinions, understandings, stories or perceptions as regards

a previously selected subject [147]. It can be tailored in many ways and for

different goals in which data collection can be done using group discussions.

This technique is quite commonly used in the field of psychology to capture

the different perspectives from a variety of participants [148]. As another ex-

ample, in the field of market research, a focus group is used for developing the

contents of a survey instrument, [88], for building a hypothesis, or developing

a construct as an initial step before questionnaire development [147], and in

usability research it can be used as a complimentary technique for evaluating

the user interface of a product [149].

Typically, focus group studies are conducted using a group of participants to

obtain a broad range of data in a limited amount of time. In a focus group

setting, the researcher stimulates the group conversation by posing a set of

questions regarding to the core topic of interest so that individuals can freely

discuss about a subject. [88]. According to Howitt and Cramer, a focus group

can be useful for discussions especially in the early stages of a research as it

generates a mixed viewpoint, and is conductive to brainstorming about novel

concepts [150]. Lastly, a focus group has “the process that began with asking the

participants to focus on the topics that were most important to the researchers

ends with the researchers focusing on the topics that were most important to

the participants.” [88, pp. 354]

In addition, the focus group method has been previously conducted in the

software engineering domain (e.g. see [151,152]).

3.3.7 Summary

This thesis follows two case-study designs, with in-depth analysis of (i) factors

affecting software productivity, (ii) personality traits of the teams of software

practitioners. Figure 3.2 illustrates a conceptual overview of the research where

three phases can be observed; (i) Theoretical Contributions: Model Building,

(ii) Empirical Contributions: Grounded on the Software Development Land-

scapes, (iii) Model Testing and Empirical Validations.

49

www.manaraa.com

Industrial Experience

Focus Group Study for
Factor Identification

Literature Review

Identification of Latent Constructs:
Software Productivity, Social

Productivity, and Social Capital

Factor Based Productivity Models

Identification of software
development roles for selected

software process models

Games in Software Development

Personality Based (Game
Theoretic) Team

Configuration Model

Tripartite Software Productivity Model
Pair-wise Correlational Model between

roles and latent constructs
Card Game Model for Profiling Software

Practitioners

Quantitative Survey
Instrument

Validation Interviews
for Identified Factors

Productivity Scale for Software Development
Organization

Game Playing for
Testing the Model

Grounded Theory
for Card Creation

Process

Profiling and Visualizing Individual and Team Charactertistics

Quantitative
Validation of

Cards

Model Testing and Empirical Validations Case Study IICase Study I

Empirical Contributions Grounded in Software Development Landscape

Theoretical Contributions: Model Building

Figure 3.2: A Conceptual Overview of the Research

The research activities in this work can, thus, be summarized as follows: Firstly,

we identify the factors that are affecting the software productivity and its rela-

tionships with its social aspects namely social productivity and social capital.

Based on the selected constructs and the identified factors, we build several

factor-based productivity models for software development. To assess the va-

lidity of a measurement scale based on the quantification of these latent con-

structs, we conduct empirical observations in an industrial setting, where we

constitute a tripartite factor-based productivity model specific to a software

development organization. Secondly, we identify software development roles by

using a group of software process models. By using this as the main reference,

we empirically investigate the pair-wise correlation between roles that are found

in software industry and latent constructs. In an attempt to understand the

characteristics of a personality-based team configurations, thirdly, we investi-

gate personality traits of the software practitioners. To this end, we design

50

www.manaraa.com

a card game, which can be used to reveal the personality traits of software

practitioners on a psychometric scale.

3.4 Research Process: Case Study I

In this section, we elaborate the research methodology for the case study I (see

Figure 3.2). We describe the details of the research process used for the em-

pirical investigation of the factors affecting software development productivity

by a case study analysis using a middle-sized software company. The details of

our research methodology (see Figure 3.3) comprises the following steps:

Initiate Hypothesis

Review of the
literature

Identify factors of
productivity

Identify factors of
social capital

Identify factors of
social productivity

Categorize all
observed
variables

Identify roles to be
included in software

teams

Conduct a survey in a
middle sized

company

Create a survey
instrument

Build a series of
structural equation

models

Observe the correlations among
the productivity, social

productivity, and social capital

Perform validation
interviews

Identify the Best Models

Discuss with Focus Groups

Figure 3.3: The Systematic Approach for Creating SEM Models of Productivity

• First, we consider productivity, social productivity and social capital as

latent variables that cannot be directly observed. Therefore, we use sev-

eral potential factors to identify them.

51

www.manaraa.com

• We form our hypothesis, which represents the fact that there is an ob-

servable relationship among the pairs of productivity, social productivity

and social capital based on the selected determinants.

• As identified above, secondly, we review the literature to consolidate the

key factors affecting the productivity, social productivity and social cap-

ital of a software development organization.

• Thirdly, we categorize these variables for creating several models for each

latent variable that are identified and for assessing their correlations.

• To investigate the degree of participant’s agreement, fourthly, we devel-

oped a survey instrument with sixty questions on a Likert scale between

1 (strongly disagree) and 5 (strongly agree).

• Next, the questions are transformed into a questionnaire where the data

is collected and initially analyzed. The main portion of the data is used

for measuring the correlations of the factors affecting our three latent

variables. We asked a set of questions exploring such dimensions as work

experience of a participant, gender, actual and the ideal team size (e.g.

see Appendix A for questions 18 and 19).

• Fifthly, we illustrate the framework by a case study as confirmatory fac-

tors analysis and construct several structural equation models with single,

double, and tripartite models in an attempt to find the best model that

fits the data collected for those purposes.

• For the models with one latent variable, we develop our first model with

the data from the literature and an alternative model, which is usually

refined by focus group study where we asked the company for their opinion

about the determinants of selected models.

• We build alternative SEM models for each single latent construct to com-

pare a version from a literature and a version developed using the company

selected indicators from an industrial perspective (see Model II, Model IV,

Model VI).

52

www.manaraa.com

• After constructing the initial models, we investigate the impact of roles

and team based parameters on the latent constructs of productivity, social

productivity and social capital.

• Finally, we perform a set of validation interviews to discuss the results

obtained from SEM models with the management team of our industrial

partner, which yields some interesting insights and interpretations.

3.5 Research Process: Case Study II

In this section, we detail the research process we conducted in the second case

study (Figure 3.2). The details of the research process (see Figure 3.4) comprises

the following steps:

Initiate Hypothesis

Review of the
literature

Create Situational
Context Cards

Create the rules of
the game

Pilot Study I
Test the cards

Pilot Study II
Retest the cards

Calculate the avarage of
weights

Conduct a card game

Reveal the personality traits of
software practitioners

Quantitatively Identify
Flawed Questions

Compare Results

Illustrate Teams

Review the Rules

Revise the Cards

Figure 3.4: The Steps Involved in Our Systematic Research Process

53

www.manaraa.com

• First, we form our hypothesis that there is a visible relationship between

the effective software teams and specific patterns of their personality

traits.

• Secondly, we review the literature relating to the use of MBTI tests in

software engineering domain and investigate previous findings. Next, we

review the coding in the grounded theory analysis, which will be based

on the context cards creation process.

• Thirdly, we create the situational context cards (the card creation process

is detailed in the following chapters).

• Fourth, we establish the rules of the game, which outlines the constraints

for the game-based personality analysis.

• To test the situational context cards, fifth, we conduct the first pilot study

and collect data for the questionnaire.

• Next, we conduct a second pilot study with exactly the same group of

people to recollect the data for each question.

• In the seventh step, we use a quantitative analysis technique to single

out the questions which are found problematic using both pilot tests. We

perform a two-step industrial case study.

• In the eighth step, we conduct a survey on 216 participants from the same

software company to investigate the importance of the questions. In light

of this data, we calculate the average weights for each factor affecting the

personality traits of individuals, which is used for assigning weights for

each question.

• In ninth step, we conduct our game repeatedly under the same conditions

with sixty software practitioners working on a number of teams.

• Finally, based on our findings on this case study, we illustrate five software

team structures with respect to the personality traits of its members.

54

www.manaraa.com

G
am

es
 in

 S
W

P
e

ri
o

d
ic

T
a

b
le

F
o

rm
a

ti
o

n

R
o

le
-b

a
se

d
S

ch
em

a

P
er

s.
 T

ra
its

 S
W

R
ol

es
 in

 S
W

T
h

e
o

re
ti

ca
l

T
e

a
m

 C
o

n
f.

M
o

d
e

l

Q
u

a
lit

a
ti

ve
S

im
u

la
ti

o
n

V
a

lid
a

te
 R

o
le

s

S
W

 P
ro

ce
ss

 &
 M

od
el

s

P
ilo

t
a

t
th

e
U

n
iv

e
rs

it
y

In
te

rv
ie

w
s

P
ilo

t
2

T
im

e
s

U
se

 C
a

rd
s

o
n

S
o

ft
w

a
re

 T
e

a
m

s

In
d

u
st

ri
a

l
E

va
lu

a
tio

n

R
e

se
a

rc
h

 M
e

th
o

d
s

C
a

se
 S

tu
d

y
D

e
si

g
n

 I

G
a

m
e

-b
a

se
d

S
u

rv
e

y
In

st
ru

m
e

n
t

C
o

n
d

u
ct

In
te

rv
ie

w
s

S
it

u
a

ti
o

n
a

l
C

o
n

te
xt

C
a

rd
s

C
a

se
 S

tu
d

y
D

e
si

g
n

 I
I

M
B

T
I R

ad
ar

P
ro

d
u

ct
iv

it
y

F
a

ct
o

rs

S
oc

.P
ro

d.
 F

ac
to

rs

S
oc

ia
l

P
ro

d
u

ct
iv

it
y

P
12

P
11

P
10

P
9

P
8

P
7

P
6

P
3

S
o

ci
a

l C
a

p
ita

l M
o

d
e

l

P
ha

se
 II

I

P
4

P
ha

se
 II

P
5

P
2

P
1

P
ha

se
 I

u
se

u
se

p
u

b
li

sh

p
u

b
li

sh

ill
u

st
ra

te

u
se

p
u

b
li

sh

p
u

b
li

sh

p
u

b
li

sh

d
e

si
g

n

va
lid

a
te

it
e

ra
te

e
va

lu
a

te

e
va

lu
a

te

u
se

re
vi

e
w

re
vi

e
w

cr
e

a
te

d
e

si
g

n

va
lid

a
te

re
vi

e
w

b
u

il
d

p
u

b
li

sh
p

u
b

li
sh

d
e

si
g

n

p
u

b
li

sh

p
u

b
li

sh

b
u

il
d

b
u

il
d

p
u

b
li

sh

d
e

si
g

n

F
ig
u
re

3
.5
:

H
o
li

st
ic

V
ie

w
o
f

R
es

ea
rc

h
A

ct
iv

it
ie

s

55

www.manaraa.com

3.6 Holistic View of Research Activities

Figure 3.5 illustrates the holistic view of how the research papers, theoretical

and empirical findings are connected in overall research design. It is divided into

three main phases, corresponding to the three years of progress. To empirically

test the theoretical models, a significant amount of this study was presented

and published in academic conferences and journals (see page xviii for more

information).

The initial research idea was published as early as possible to minimize the

implementation risks (see P1). Using an iterative strategy, in phase 1, several

different game theoretic models were built and the research idea was rigorously

refined. The outcomes of this process were published in a number of software

engineering conferences (see P2, P6, P8). To assist in tailoring the roles to

software practitioners, a summary of roles in different approaches was reviewed

and its results were published (see P7). The vision of using a card game to

assess software practitioners was first formed and published in the Software

Engineering Notes (see P5). Later, it was used in designing our second case

study.

In the beginning of phase 2, to discuss the initial research plans, and prelimi-

nary research questions, a position paper is published (see P4). Based on the

feedback and our theoretical models two industrial case studies were designed.

In case study 1, the relationship between software productivity and social cap-

ital of software development was investigated. Concurrently, the situational

context cards were created, and several interviews were conducted. The two

pilot studies were performed to evaluate our cards at a university setting, and

the results of these 2 pilot studies were published in a conference (see P9).

An empirical study to test our game based instrument on software teams was

conducted, and its results were submitted to a journal (see P12).

In phase 3, the factors of software productivity were reviewed and the social

productivity of software development was introduced. An initial survey for

investigating the factors of productivity was conducted as a pilot study at a

university environment, and was published (see P3). An extension of this paper

56

www.manaraa.com

was invited to a journal, which was published (see P10). Using this experience,

a new survey instrument was built. Ultimately, the survey instrument was

tested in the field, and results were submitted to a journal as P11.

3.7 Chapter Summary

This chapter started with an introduction to research philosophies, which was

followed by a brief discussion of the qualitative, the quantitative, and the mixed

method research. It continued with a justification of the selection of the mixed

method research strategies. Furthermore, we discussed the set of methods that

are specifically selected for this study including case study, survey research,

structural equation modeling, game playing, grounded theory, and focus group.

Finally, the two industrial case study approaches specifically designed as the

research process were presented. In the following part of this thesis, we will de-

tail the research processes and its first chapter is going to present the empirical

analyses and their findings from the two industrial case studies.

57

www.manaraa.com

Part III

Literature Review & Theoretical

Contributions

58

www.manaraa.com

Introduction

This part of the thesis draws its strength from several fields of research, and

collates the knowledge from various disciplines including but not limited to

software engineering economics, game theory, software productivity, and per-

sonality type research in psychology. It includes three chapters: the literature

review of a number of academic fields and our theoretical contributions (i.e. the

models that are created based on these reviews), and consequently a number

of theoretical contributions that comprise the productivity and software team

configuration models are built. In the following three chapters, the foundation

for this research is built and documented. Among other minor contributions, it

makes two key contributions: (i) building a game-based model for understand-

ing effective software team configurations, (ii) constructing models of software

development productivity. In addition, several constructs such as social produc-

tivity and social capital for software development are introduced, and a number

of theoretical models have been built to reveal the relationships among these

constructs.

Developing Research
Questions

Literature Review, Theory
Generation & Model

Design

Background & Identification
of the Research Context

Industr ial Implementat ion

Research Requirements

Empirical Evaluation

Figure 3.6: A part of the conceptual overview of the research

59

www.manaraa.com

Chapter 4

Application of Games in Software

Engineering

4.1 Introduction

In this chapter, the theory of games and its application in software engineering

domain are investigated in detail. It starts with an introduction to games

and their business applications. Then, it presents an introduction to game

theory, the notion of mechanism design, and the application of games in software

engineering research. The last part of this chapter concludes with a game

theoretic model based on revealing participants’ personality types with the goal

of understanding effective software team configurations.

4.2 Defining Games and Gamification

Although differences of opinion still exist, there appears to be some agreement

that a game refers to “a system in which players engage in an artificial conflict,

defined by rules, that results in a quantifiable outcome.” [153, pp. 80]. A typ-

ical game consists of players, rules of interactions for regulating participants’

behaviors, a protocol or a game system (e.g. game board) with which a player

interacts, and ultimately a goal commonly based on an artificial conflict or an

outcome. The notion of games is ubiquitous and highly connected with char-

60

www.manaraa.com

acterization of human activities with several benefits [154]. From the outset,

games enable us to form collective social structures, which ultimately produce

considerable advantage for building complex software artifacts. Therefore, it is

not surprising to discover that games that are played in societies have great (so-

cial and economic) benefits [155]. In some cases, they could even offer solutions

for society based problems [35].

Most broadly conceived, the vision of using game design elements and game

based thinking to create player like motivated behavior (e.g. competition, col-

laboration, etc.) is termed as gamification [156]. The trend emerges from the

idea to use game mechanics and game design rules unexpectedly outside the

video game industry. Considering the size of its industry, games demonstrate

themselves as useful tools for incentivizing participants for a planned dura-

tion [157]. Gamification can be used to transform a monotonous process to a

preferred activity by engaging and motivating its users, e.g. see [158]. In addi-

tion, a number of firms have already used gamification to improve their customer

loyalty programs mostly for creating competitive advantages in their business

where the application of game mechanics is one of the convenient ways to en-

courage customers’ (e.g. by providing reputation points, achievement badges,

etc.) to use their products and services [154].

However, the term gamification is not yet precisely defined. Zichermann and

Cunningham [156] point out that gamification may have diverse meanings for

different individuals. Deterding et at. [159, pp. 2] define gamification as: “use

of game design elements in non-game contexts” [157]. From a marketing view-

point, Huotari and Hamari [160] identify gamification as an activity in which

quality of services are improved by using game-like features, which could po-

tentially be useful for marketing services. This view is not fully supported by

Deterding et at. [161] who argue that gamified applications should only employ

elements of a game unlike a serious game, which eventually proposes a com-

plete game construction. A potential limitation with this explanation is that

first there is no consensus for the exact definitions of game elements [157]. Sec-

ondly, it seems that the understanding of the boundary between the game and

61

www.manaraa.com

game element is questionable. For example, a game consists of self-similar ele-

ments, which are constructed by using a set of gamified parts; therefore, game

itself may be an end-product of a gamification process. Thirdly, this researcher

argues that initial descriptions fail to take process thinking into account. In

fact, one possible outcome of a gamification process might likely to be a game

itself. Even in some cases, a game can be gamified in the actual process (e.g.

see [162]). Lastly, Groh [163] discusses the challenges and strategies for facili-

tating and promoting gamification where he highlights the fact that the concept

should be more utilized for conducting rigorous research regarding the pros and

cons. In the context of this thesis;

Gamification is a transformation process in which inter-

action patterns, game mechanisms, reusable game compo-

nents are operationalized to solve problems in an intended

environment that is situated within a real world context.

To produce a gamified system or a component, players’ interaction patterns

should be identified and a game mechanism (i.e. rules of interaction) should be

formed. As a part of the process, the game mechanics (e.g. levels, badges, etc.)

should be tailored based on the requested level of engagement with the user.

The idea of using the gamification process is relatively new in software de-

velopment landscapes. From a software engineering standpoint, a game-based

framework may be useful for exploring managerial problems such as understand-

ing effective team configurations. Using game-based approaches in non-gaming

context has several novel advantages. First, it motivates people better than

other known motivational methods. It has the ability to transform “an intrin-

sic motivation with an extrinsic reward” [156, pp. 27]. Secondly, we propose

that a set of game components are used to build a game and its outcomes can

be analyzed by using game theory.

62

www.manaraa.com

4.3 Game Theory

Based on the idea of representing social situations in a game like setting, game

theory is a useful technique for analyzing conditions, particularly where an indi-

vidual’s outcomes are depending not only his or her choices but also significantly

affected by the decisions of other participants’.

Game theory was first introduced by Neumann et al. in 1944 with their famous

book “Theory of games and economic behavior” [164] for economics, which was

later adapted to several other fields such as sociology, biology, operational re-

search, and computer science, etc. There are, however, the two branches of

game theory, which differ in a number of respects, which are known as coop-

erative and competitive game theory. In the competitive form, participants

of a game are considered as independent (competing) individuals, who aim to

maximize their profits or interests regarding to a situation. On the other hand,

the notion of cooperative game theory relies on the fact that there is a likely

chance of quantifying the cooperation among the participants with transferable

utilities (i.e. a commodity such as knowledge or money that can be transferable

among participants), who aligned themselves with incentives for cooperation.

In knowledge-based activities, human teams are more capable of achieving col-

lective success rather than relying on individual efforts (i.e. knowledge is a

socially constructed entity [165]). Therefore, software development is usually

considered as a collective work of strategic interactions [6]. Game theory is a

mathematical theory of interactions, which allows us to model several social in-

teractions such as the conflict of interests [166]. It focuses on the interactions of

individuals and choices of people and their contribution to an outcome of a situa-

tion. Game theory is also useful for analyzing the past and the present situation

for expected behaviors of participants as to their different individual payoffs or

organizational outcomes [167]. In fact, game theory is a well-developed theory

for describing the interactions of rational, independent agents in a variety of

settings used for creating approaches in fields including, economics, computer

science, social science, political science, and biology [168].

Game theory investigates the outcomes of interaction of entities. It is a collec-

63

www.manaraa.com

tion of analytical methods or tools based on mathematical models to define or

observe social situations (e.g. conflicts) [168]. To this end, game theory out-

lines interaction of people in terms of mathematical game forms. These forms

consist of players (participants or actors), rules required for their interactions,

actions or strategies (strategy profiles) of participants, and have definition of

outcomes (i.e. payoffs) of their actions. One of the basic assumption in classi-

cal game theory is that participants are rational, i.e. follow the rules and play

to win [166]. Common game forms involve these: (1) Non-cooperative games

where participants only act according to their benefits, (2) Cooperative games

where participants are inclined for cooperative behavior (i.e. cooperation is

used as the main motivator), (3) Zero Sum games where one of the participants

should win the game while other(s) lose, (4) Constant Sum games where the

reward for each participant is constant [169].

4.4 Games in Software Engineering

The social and economic value of software development has become more promi-

nent in an information based global economy. Therefore, as has happened in

many other fields like sociology, economics or computer science, there are some

approaches that are using the game theory in software engineering research.

Several limited attempts have been made to understand software development

as a cooperative or a competitive game form. For example, Lagesse [170] built a

model based on a cooperative game theory approach with the idea of optimizing

task assignment in software engineering efforts. On the other hand, Grechanik

and Perry [6] focused on a game theoretic approach as a non-cooperative game,

based on the fact that there are a number of potential goal conflicts among the

roles of a software development approach. Moreover, Cockburn [171] consid-

ered software development as a series of games of invention and communication,

where he portrayed the software development as “economic-cooperative gam-

ing”. His vision is similar to an iterative game in which two goals are competing

for a resource. He also suggested that as an emerging area, which he called “me-

chanics and economics of communication”, it should be investigated in the near

64

www.manaraa.com

future. As to the skills of the participants, Cockburn [172] also pointed out that

software development should be considered as a game hinging upon its project

resources. Using an approach based on grounded theory, Baskerville et al. [173]

considered trade-offs and balancing decisions as balancing games that may ap-

pear in three different levels (i.e market, portfolio, management), where their

nature is to progress dynamically with the demands of a market. Ko et al. [174]

used a game theoretic approach to improve the reliability of data collected by

using a method to improve its accuracy for a more effective quantitative process

management, where they also recommended a study for applying game theory

in software project management and software process improvement activities.

To improve the learning abilities of students, Holeman [175] designed a soft-

ware process improvement game, which is a type of board game (designed to

instruct CMMI to students) wherein participants compete for achieving CMMI

level 2 on a Monopoly-like game board. Ogland [176] developed an approach

for conflicting situations by using game theory and drama theory. He portrayed

SPI as a game, which is playable by quality auditors, software engineers, and

managers. The goal is to identify how an SPI standard progresses through

equilibrium (i.e. a proposed solution concept in a game).

Although game theory can be considered as a newly emerging field, there is

a variety of related works highlighting the importance of decision-making in

software development landscapes. Equipped with the idea of “making every-

one a winner”, Theory W [63] is an approach based on the concept of risk

management in software engineering decisions. To resolve the conflicts among

the stakeholders of a project, it also suggests that the role of management

somehow acts like a mediator or a negotiator, which seems similar to a game

theoretic approach. In order to establish a value based approach and formalize

the design goals of software development, Sullivan et al. [18] considered soft-

ware design as an investment activity, where they applied the concept of real

options to evaluate economic outcomes. To improve the effectiveness software

architecture decision-making, Vajja and Prabhakar [177] investigated design is-

sues based on the quality attributes, where they can be modeled as a game

65

www.manaraa.com

theoretical problem. Sazawal and Sudan [178] suggest a game model, basic

software evaluation game, intended to be useful for helping software teams on

decision-making particularly from an evolutionary perspective on software de-

sign decisions. Furthermore, they hypothesize that lightweight game theory is

more useful for understanding software evolution. Bavota et al. [179] investi-

gate the opportunities of using non-cooperative game theory of “extract class

refactoring”. One possible situation maybe when two players are competing to

build new classes for improving the levels of cohesion.

Social dilemmas are situations that are arisen from the conflicts between collec-

tive and private interests (mostly long term versus short term). In other words,

participants may discover a more feasible alternative action suiting their self

interests better than team-based contributions. The prisoner’s dilemma is a

simple framework, which has been used frequently by researchers to observe

conflicting situations. A set of studies in software engineering literature fo-

cus on the application of Prisoner’s Dilemma, which is a non-cooperative game

based on two persons interactions. For example, Hazzan and Dubinsky [180]

investigate the way of cooperation in extreme programming, in particular for

pair programming practices. Secondly, a hidden game of Prisoner‘s Dilemma

is investigated by Feijs [181] between a programmer and a tester. Thirdly,

Oza [182] uses Prisoner‘s Dilemma framework to investigate strategic interac-

tions in a client-vendor relationship in offshore outsourcing projects. Recently,

Klein at al. [183] draws out attention to the notion of incentive conflicts in

software development both for identifying design characteristics and resource

allocation perspectives.

From a software organizations perspective, these findings suggest that game

theory is applicable to various software engineering problems. There is, how-

ever, a divergence between the theoretical and practical approaches. Therefore,

the current challenge here is to find more practical ways to apply aspects of

game theory in the software development process.

66

www.manaraa.com

4.5 Mechanism Design

In this section, we highlight important points of mechanism design (MD). A

subfield of game theory, mechanism design, specifically deals with social deci-

sions and their effects on outcomes. In this framework, a designer or a manager

investigates how one designs the social structure of an organization so that

the individual incentives of participants can be transformed into the organiza-

tional wide desired goals. In other words, mechanism design is an approach to

improving the social structure of an organization.

A mechanism functions as a communication model of an organization. Based

on a set of rules, this model takes the required information from participants

as inputs and determines a social outcome [184]. The notion of MD is about

understanding the structure of an organization such as a communication sys-

tem for improving social decision-making and societal welfare. In MD, a social

planner can create an organizational structure to induce a planned or desired

outcome based on the private information held by the participant’s of an orga-

nization. The information provided in this process is useful for modeling organi-

zational procedures, solving economic problems such as allocation of resources,

or dealing with problems related with asymmetric information and ultimately

for supporting cooperation among the organization [184]. MD should also as-

sist a social planner in modeling an organization for analyzing how the private

information of individuals interact throughout the organizational rules, which

directly affect the expected outcomes. Such a model usually depends on what

the possible action for each participant is and what consequences are.

Hayek [185] developed the idea of viewing social organizations as mechanisms for

communication and information exchange. Hurwicz [184] introduces the con-

cept of economic mechanisms to model organizations where participants com-

municate, and exchange information. Furthermore, he coined the term incentive

compatibility, which ensures that self-interested individuals can be motivated

to reveal their true preferences and their private information. He suggested

that a model of an organization should be based on communications and ac-

tions that are available to each participant in an institution. Harsanyi [186]

67

www.manaraa.com

developed a model based on the theory of Bayesian games, (i.e. games with

incomplete information). He investigated situations where individuals have in-

sufficient information. In particular, he studies cases where participants have

uncertainty about other participants’ information (while the rules of the game

form is known by all the participants). Moreover, he worked on models of in-

complete information based on issues of modeling participants’ actions in terms

of each others’ in social organizations.

A number of research has been conducted on the application of MD to several

information technology problems. For example, Zhao et al. [187] propose an

approach to Internet security issues as economic factors such as factors gov-

erning the actions and interdependence of the participants. For this purpose,

they implement an economic mechanism (in this context, a certification mech-

anism) to reduce the security risks of users over the Internet. The essence of

this mechanism depends on the idea to minimize the possibility of sending out

malevolent traffic by increasing the responsibility of service providers and pro-

moting the incentives to monitor the suppliers of malware and spam in their

networks. The mechanism best works on a certified network concept by which

each certified service provider will be able to use the collected information from

other providers and held responsible for the traffic that is generated by their

users [187].

Stef-Praun and Rego [188] outline a simple mechanism to transfer system wide

efficient allocations of resources rather than individual resource allocations in a

decentralized market for web services producers and consumers. Authors claim

that the proposed mechanism can be realized to fit any structure composed of a

large number of self-interested participants (e.g. a dynamic collaborative envi-

ronment). Friedman and Parkes [189] investigate a customer pricing problem of

a wireless networking provider, which may be seen in a coffeehouse as a mech-

anism design problem. They develop a game theoretical model for bandwidth

allocation based on a game of incomplete and asymmetric information

Taken together, these findings highlight that the MD theory and its actual im-

plementation in software organization can be helpful for analyzing several social

68

www.manaraa.com

and economic interactions. Furthermore, it may be used for building models

for understanding software development team configuration. In general, a game

based approach can be used for revealing true preferences of self-interested in-

dividuals by designing the rules of interaction e.g. communication protocols,

game rules, etc.

4.6 A Game Theoretic Perspective

As previously mentioned, software development is inherently a complex process

with a common element of uncertainty [190], which could primarily be caused

by human factors. Conceptually, the development process is formed by the

interaction among several participants who are performing a set of roles with

distinctive personality traits. A number of previous studies actually have re-

ported that interpersonal conflicts between these roles are unavoidable during

the software development activities [191,192]. A reason for this is that the per-

sonality traits of software practitioners should have an impact on team based

interactions.

From a social perspective, a software process can be considered as a workflow

in information streams. Consequently, a software organization can be defined

as combinatorial networks of people connected for software development team-

work. In order to address the adversities associated with people and their

connections, it is important to investigate the potential conflicts among the

management and the software practitioners who are traditionally known to be

individualistic rationalists [6].

For example, while management aims to improve the effectiveness of software

teams by using social characteristics of their personnel, a software practitioner

may not be interested in revealing his personality type. This conflict can be

investigated by using a game theory, which takes the strategic possibilities into

account. The goal of a game theoretic model is to reveal the private informa-

tion of the participants and combine their preferences to explore an optimal

configuration.

To build a simple game to represent such conflict, both the manager and soft-

69

www.manaraa.com

ware practitioner need to be identified by their private information, i.e. their

possible strategies (the options he can choose from), and payoff possibilities for

all participants.

4.6.1 A Conceptual Game Model

We consider a strategic game form:

G = {N, (Si), (ui)}, (4.1)

with n participant i from a set of N = {1, .., i, ...n} players. These players,

moreover, choose a strategy si from a finite set of strategies S where a strategy

profile is denoted as s = s1 × s2 × s3.... × sn. Let s′i be any action of player

i, which can be either equal or different from si, therefore (s′i, si) is an action

profile where all players except i choose their strategy s. In addition to that,

−i signifies the participants other than the participant i (i.e. except i) whereas

S−i designates the strategies that are not chosen by participant i. The utility

function for player i is denoted by ui : S → R, which presents player i’s payoffs.

Such a game should be considered as naturally strategic. Normally, this means

that participants’ expectations of other players’ decisions are likely to affect

their actions. In light of these remarks, consider the strategy profile above is

a solution to game G(.) where a strategy si is a strictly dominant strategy for

every player −i, which is assume to be a steady state among the players.

ui(si, s−i) > ui(s
′
i, s
′
−i) ∀s′i & s−i (4.2)

4.6.2 Two Person Game Form

Here, we describe a two-person game based on particular goals of a software

practitioner (P) and a game master (GM). In the two person game model, we

assume that GM has two strategies: (i) building the ideal team, which hypo-

thetically consists of the participants who are socially compatible and therefore

able to work with the best performance (ii) building the actual team, which is

70

www.manaraa.com

composed of the individuals who are not gathered together by any social con-

straints such as their personality characteristics. Similarly, P has two strategies;

(i) reveal his true personality type, (ii) not reveal his personality type.

The intersections of these four strategies define four different outcomes as shown

in Figure 4.1.

Game Master (GM)

Building the Building the
ideal team actual team

S
o
ft

w
a
re

P
ra

ct
it

io
n
er

(P
) P reveals, GM builds P reveals, GM builds

Reveal the ideal team the actual team
himself 2,4 1,2

Doesn’t P does not reveal, P does not reveal,
Reveal GM builds GM builds
himself the ideal team the actual team

4,-1 3,1

Table 4.1: Outcome Matrix of the Game:
Key: (x,y) = (P,GM) → 4 = best; 3 = next best; 2 = next worst; 1 = worst; -1 =
improbable

In our two person game form; N = {P, GM }, S1 = { Reveal, Not reveal },

S2 = {Build the ideal team, Build the actual team }.

The game is shown in matrix form where the outcome matrix is represented by

an ordered pair of numbers, x representing P, and y showing the preferences of

GM. We assume that the value of outcomes represents ordinal preferences (i.e.

4 is the best, and 1 is the worst).

The ranking values found in the outcome matrix are based on the assumption

of the goals of the two players.

Game Master (GM):

• Primary aim: Building the ideal team.

• Secondary aim: Revealing software practitioners personality type.

Software Practitioner (P)

71

www.manaraa.com

• Primary aim: Does not reveal his true personality type.

• Secondary aim: Wants to work in an ideal team.

The primary goal of a GM is to build the ideal team using the personality type

information. However, to this end, GM needs to reveal the personality types of

practitioners. Although we propose several rules of interaction to regulate the

game setting and to assist the GM in the process of identifying the personality

characteristic of a practitioner, we know that P may not prefer to reveal his true

type. Note that if P does not reveal his personality type, it would be impossible

for GM to build the ideal team (see (4,-1)). In light of this, a stable outcome

for this game would be (3,1). However, we seek to build an ideal team, thus

the rational (desired) outcome for the game for us, which should be (2,4).

4.7 Game Composition as a MD Problem

Consider a software development project where a set of individuals should be

organized to improve the effectiveness of software teams as regards their per-

sonality types. A manager (social planner) facilitates the activities of team

composition where the participants of a software development project are as-

signed to their ideal teams. Next, based on the participants’ personality types,

a manager needs to decide whom should be appointed to which team. This

situation can be understood as a mechanism design problem where the goal is

to understand effective team structures so as to maximize the team efficiency.

A conceptual solution to the problem of understanding efficient team composi-

tions in a software development organization can be solved by

• Identifying the participants to true personality types;

• Exploring the effective team structures by using this information.

72

www.manaraa.com

4.8 Rules of the Game

We formalize the team configuration mechanism with the assumption that we

can identify the personality traits of individuals using a psychometric assess-

ment approach such as MBTI. Hence, we design the rules of our game. Tradi-

tionally, a game should be managed by an individual, the game master (GM),

who can be a software manager or, team leader. It could be played by either a

single person or a software team. In this context, the expected outcome of the

game is the true personality types of individuals where the primary job of a GM

is to orchestrate the game, for example, by asking questions to the participants.

The rules of the game can be itemized as follows:

• GM announces the participants how the game is operated and shows one

special type of form, which is later used to compute the personality traits

of an individual.

• GM sets the length of the session, i.e. thirty minutes ideal but may change

with respect to size of the software team.

• After giving the instructions to the participants, GM draws a card from

a card deck preferably within a sequential order (i.e. a game deck shall

set up with a specific rule).

• GM shows the picture of the card and further reads the situation on the

card with two different answer choices. Participants, then, are asked to

select between two possible responses.

• GM waits for all the participants to finish marking their answers and

continues with the next question until the full deck is done.

• The game mechanism reveals the personality type of the participants (for

each individual based on the acquired knowledge) regarding the patterns

of their behaviors.

• GM informs the management about personality characteristics of the play-

ers, i.e. software practitioners.

73

www.manaraa.com

Player

Revelation
Mechanism

Game Master

6: Wait for confirmation of each questions

3: Places a selection for each question

2: Show the picture and read questions

7: Notify player that the game is over

4: Each choice is documented by player

1.2: Anounce game rules

5: Establish game rounds

1.1: Starts Game

1: Create a game session

Figure 4.1: The Sequential Steps of the Game of Revealing Personality Traits

Figure 4.1 shows the graphical representation of the game of revealing person-

ality types. It is apparent from the figure that there are two main participants:

the game master, and a player (or a team of players). The revelation mecha-

nism is the formalized rules, which are designed for mediating the interactions

between the game master and the player(s). The mechanism can store the

data in a paper form or otherwise the game could be realized as a software

system where the game master and the mechanism could be implemented using

a software.

74

www.manaraa.com

4.9 Chapter Summary

Software development required teams of self-interested individual actors to con-

tribute effectively to organizational goals. Organizations that have failed to ac-

count for the motivations of individual participants often experience difficulty

accomplishing their goals [193].

The concept of gamification has been successfully used in different settings in-

cluding but not limited to organizing training programs, maintaining personal

activities, online and in-person shopping, conducting market research, etc. [156].

We suggest that the gamification process is applicable to any organizational set-

ting that develops information or knowledge artifacts (e.g. documents, source

code, etc.). In particular, it is likely to be more effective in volatile environ-

ments that need social interactions among its participants where the rules of

interactions dramatically affect the process of artifact creation and ultimately

organizational productivity as a whole.

Game theory suggested that we viewed the organization and its goals from the

standpoint of individual rational actors, who did choose actions that maximized

their expected utilities, subject to their incomplete knowledge of the motivations

and likely actions of others, and their limited ability to predict future outcomes.

The challenge for software organizations was to allocate resources and to create

incentives and disincentives in such a way that participants were motivated to

take actions that contribute effectively to organizational goals.

In the next chapter, we introduce the notion of software ecosystem, and con-

tinue with social and value dynamics of software development. Later in the

next chapter, we will detail the software development productivity, the soft-

ware artifacts, and social productivity concepts.

75

www.manaraa.com

Chapter 5

Social and Value Dynamics of

Software Development

5.1 Introduction

This chapter intends to set a background to social and value dynamics of soft-

ware development. First, it reviews the notion of software ecosystem, software

artifact and the value perspectives. After reviewing the literature of software

development productivity for identifying its factors, a number of software de-

velopment productivity models are developed. Next, a group of social capital

models are built based on a model of social capital (i.e. [194]) and illustrated

accordingly. In the final part of this chapter, the concept of social productivity

is introduced, and lastly a set of models for the social productivity of software

development are constructed based on the factors extracted from the software

engineering literature.

5.2 The Software Ecosystem

In recent years, exploration of the importance of the interactions of an economic

community has highlighted the fact that software development organizations

should co-evolve their capabilities and roles for maximizing the opportunities

for project and business success. Therefore, the traditional viewpoint of a

76

www.manaraa.com

software business - selling software to the mass market - has been replaced by

the idea of organizations, which are formed by interacting entities similar to a

biological ecosystem [195]. Based on the idea that interacting participants and

organizations of the business world is considered similar to mechanisms of the

nature,

Moore [196] introduces the definition of a software ecosystem as an economic

coating that forms around a software product. Parallel to Moore’s definition,

Mitleton-Kelly from the London School of Economics investigates organiza-

tional complexity by applying the theory of complex social systems to the

theory of organizations [197]. She suggests that complexity arises from the

interactions through the elements of a complex co-evolving social ecosystem,

including all individuals and organizations based on their business, technical

and organizational relations among suppliers, customers or competitors.

According to Shapiro and Varian, “there is a central difference between the

old and new economies: the old industrial economy was driven by economies

of scale; the new information economy is driven by the economics of net-

works” [198, pp. 173]. Therefore, a software ecosystem should be based on

various information exchange networks. It must be considered as a set of sev-

eral business entities working on collective outcomes in a shared market where

several entities play distinctive roles. The relationship is based on the exchange

of knowledge in terms of several forms such as information artifacts. Recog-

nition of the software development organization as a social ecosystem brought

the realization that the investigation of its social structure (e.g. connectivity,

cohesion or coupling of its members) may help to improve the human centric

aspects of the business process.

5.3 Social and Value Dynamics

Social dynamics, also known as the dynamics of human interactions, is a multi-

disciplinary field of science that is concerned with analyzing socialites or social

systems formed by participants and their interactions. This section surveys

several important concepts and definitions and the foundations of social and

77

www.manaraa.com

the value dynamics of a software organization. These concepts and definitions

highlight the important points of the Social Aspects of Software Engineering

(SASE) [5]. Ultimately, SASE will help us to understand social and value

dynamics of a software organization, to promote cooperation within software

teams and organizations and thus to make them respond better to the dynamic

and future trends of software development. We start this section by defining

a software artifact. Next, we identify sources of capital that are used in any

production process. Moreover, we define both social and human capital, as well

as introducing the concept of social productivity.

5.4 The Software Artifact

The cost of quality attributes in the software development activities is heavily

based on interaction skills of individuals and teams. Specifically, one of the

most important of the output of these skills is the software artifacts. Software

artifacts are defined as; “The products, process and software developed by human

efforts...that embody human knowledge.” [199, p. 11]. Some researchers suggest

that a software artifact has a social dimension because it is an outcome of a

social process [28].

According to Baldwin and Clark, an artifact is a quintessential outcome of

both human intelligence and endeavor. Nevertheless, knowledge-based artifacts

(e.g. software, computers, etc.) are interconnected group of entities usually

created by a team of workers [200]. Morisio et al. point out that the artifacts

produced in a software process are complex creations and channeling of the

human acumen identified several different characteristics.

Tsui [28] describes the notion of software artifacts as the a “unit of material”,

which can be in any form such as documentation or source code; its life-cycle

starts from requirements analysis phase and follows through product develop-

ment and documentation. Several entities can be accepted as software artifacts

including manuals or guide books, and even internal deliverables inside the or-

ganization. Software artifacts are considered as smaller and manageable parts

of a software project. They are useful touchstones for implementing the con-

78

www.manaraa.com

cept of separation of concerns [201], which values the division of the effort and

knowledge by coordinating the software engineering tasks and decisions [200].

Shariq suggested that the knowledge should be considered as an outcome of

human activities, which essentially produces knowledge artifacts, and knowledge

networks are intervened by these artifacts [199]. Cluts conducted a case study

to develop a framework based on the connections between people and their

activities where artifacts are described to contain a backlog of the past events

and connections among them [202].

5.5 Productivity

In so far as it is not different from other forms of production, software pro-

duction is considered as an economic process of conversion of inputs to outputs

based on industrial methods of production. Consequently, one of the concerns of

industrial process improvement is investigating methods to improve and mea-

sure the economic productivity. However, the social and economic aspect of

productivity should depend on a set of several related factors, which will be

explained in the following subsections.

5.5.1 Economic Productivity

In general, economic productivity is considered as a value to measure the effi-

ciency of this production process. For example, it is measured as a ratio of the

units of inputs versus the units of the outputs [203].

However, it is also considered as a utilization of resources with an optimal

cost [204](a ratio of production capacity to production cost). It depends on

the availability of resources and is highly connected with the value creation

processes [205]. Brynjolfsson [206] states that productivity is an essential eco-

nomic criterion for the contribution of any technology to an economy. Sink et

al. [207] defines productivity as a ratio between the actual output versus the

expected resources that have been used. Based on the assumption that time is

a resource, Jackson and Petersson [208] suggest a time-based measurement of

79

www.manaraa.com

productivity (i.e. a ratio between value adding time versus the total time). The

limitation of this approach is that usually there could be a lack of information

about the resources that are consumed during the production process.

5.5.2 Software Productivity

Similar to several other industrial propositions such as industrial and man-

ufacturing processes, software productivity is traditionally defined as a ratio

between the inputs (e.g. the cost of work/resources) versus the outputs (i.e.

software artifacts or services) within the production process of software devel-

opment [17, pp. 153]. This ratio could be considered as an economic output

(e.g. lines of code, function points, etc.) divided by the economic input (e.g. re-

source requirements, personnel skills, etc.), which will eventually contribute to

the completion of the end product [209]. Traditionally, a number of researchers

use the size of the software as a primary measure for software development

productivity [210]. Several software size measurement methods exist where the

most common metrics are lines of code, where it was suggested as a common

measure for size and complexity of a software [211], function points [212], which

favors the user perspective for assessing the functionality of a product, function

points per hour [213], and measurement of effort [214].

However, empirical evidence suggests that it is hard to find a suitable way for

measuring productivity [215] in industrial production and software development

productivity in particular [10]. This view is also supported by Zelkowitz [210,

pp. 7], who states “As software development productivity is a function of soft-

ware size, this makes comparisons of software productivity across organizations

and countries very difficult”.

In fact, software productivity is considered differently for stakeholders from

their distinctive perspectives. For example, from developers’ viewpoint, a pro-

ductivity measure could be the amount of code produced for the software sys-

tem; on the other hand, from the users’ perspective, it could be the degree of

functionality achieved for the software system.

The broad use of the term productivity is sometimes measured from different

80

www.manaraa.com

viewpoints such as the skill set of software practitioners, their techniques and

the instruments they used in the software development processes [216]. From

an industrial point of view, productivity is generally understood as a key issue

for software development organizations when creating a competitive advantage.

For example, it is vitally important to reduce time to market of a product

while concurrently maintaining the quality of the product. Trendowicz and

Munch [217] suggest that the factors affecting productivity of software develop-

ment should be selected based on the economic significance of their attributes,

which could also alternate in different domains of software development. In ad-

dition, they claimed that a productivity model should only include the factors,

which are found as the most important ones by the literature.

According to Jones [218], software development teams that are building similar

kind of artifacts can easily progress to more mature stages on software produc-

tivity because it improves the experience levels of both managers and software

teams. Furthermore, he argues that reuse could have not only a positive im-

pact but also a negative impact both for deliverables as well as productivity

improvement efforts as a whole. For example, using high quality reusable arti-

facts could improve productivity; however, this can also reduce the productivity

of a software project because such an artifact may not be near zero defect levels.

Productivity is significantly affected by the quality of workforce, management

capabilities and environmental conditions of a software organization [17]. More-

over, the effective usage of methods and processes, project complexity, software

team morales, and effective team configurations are the key adjustment factors

for software development productivity [218]. However, interdependent factors

involve with productivity cannot easily be controlled or improved by only ma-

nipulating the variables such as dynamic motivational factors, cost of commu-

nication and social expenses [219].

81

www.manaraa.com

5.5.3 Software Productivity Improvement

Several software engineering researchers suggest methods to improve software

productivity by balancing the field of tension among people (regarding to their

activities), processes (with respect to its tasks) or technology (by its advances

in computing power) [220–222]. There are several attempts in the literature

at understanding and measuring software productivity. For example, Scacchi

suggests a framework for examining and measuring software productivity to

perform a simulation over the production dynamics of software projects [221].

One common approach to improving software productivity relies on the the-

ory of group productivity by psychologist Ivan Steiner [223] who states that

consequences of defective processes are important for explaining actual pro-

ductivity [224]. It is calculated by subtracting these defects from potential

productivity (i.e. Actual Productivity = Potential Productivity - Losses Due

to a Faulty Process). Abdel-Hamid [224] explains potential productivity as fol-

lows; if an individual or a group uses the maximum potential of its resources,

then a level of maximum productivity is achieved. He adds that two factors

are important for representing the shortfalls for software quality and produc-

tivity problems; (i) the task’s characteristics (i.e. complex nature of a task)

and (ii) team resources (i.e. fitting individuals or team skills over tasks and

tools). These factors could increase the cost of communication and lower the

motivation of individuals and software teams.

A common view in engineering terms is that the productivity improvement in-

dicates producing more outputs from a known set of inputs by reducing the

influence of any factor that hinders productivity. For example, software pro-

ductivity improvements can be achieved by having a skillful team, improving

the path of development by reducing rework, and by creating reusable and more

manageable software artifacts [225]. In fact, an increase in the productivity is

achieved when human resources used in the software development process starts

adding more value to the software product.

Over the past few decades, software productivity has been investigated by using

several indicators affecting the productivity. One such approach is conducted

82

www.manaraa.com

by Pfleeger [226] who uses a statistical method called regression analysis. By

using this technique, he constructs an estimation model of productivity where he

calculates the effects of cost factors in a predictive manner. Moreover, regression

analysis has also been applied for determining the correlation between size and

effort for software development projects [227].

5.5.4 Factors of Productivity

Although a considerable amount of literature that has been published on pro-

ductivity factors affect software organization [228], several questions remain

unanswered (e.g. a correlation and/or significance among these factors). For

example, it is considered hard to address a single solution to the identified issues

of software development productivity [225].

Team size is another important factor for understanding the increase in develop-

ment productivity as well as project size and complexity. However, researchers

have not dealt with team size in much detail. Moreover, creative and talented

individuals are the main assets of productive teams in software development

projects [229]. This suggests that neither of the other factors can produce more

significant weakness than a lack in human capital.

One of the first systematic studies of the software development productivity

issues was reported by Scacchi [230], who reviewed the entire software develop-

ment productivity literature while analyzing potential productivity problems.

First of all, he suggested that a multivariate analysis for identifying the fac-

tors affecting the software development process might be essential. By way

of illustration, he reported several measurement issues; (i) measuring the lines

of code may not significantly reveal the true value of productivity, (ii) chang-

ing productivity patterns should be observed and factors for productivity im-

provement should be revealed, (iii) the consequences of multiple changes from

different stakeholder perspectives like managerial versus technical should be

understood [230]. In addition, he also mentioned that in middle or large scale

projects, average skilled personnel might not be important for productivity,

while in small projects skillful individuals might have more significant effects

83

www.manaraa.com

on the overall productivity. One of the most significant points he made is

that the software development productivity is directly affected by the kind of

methodology selected (e.g. iterative or incremental).

A large and growing body of literature has investigated the factors affect-

ing the productivity of software development organizations. By following the

software development productivity literature that was summarized by a sys-

tematic review [228], we select the factors that potentially affect the produc-

tivity of software development. These are (i) the software development pro-

cess [10, 221, 225, 231], (ii) the level of individual’s motivation [10, 16, 225] and

its influence on software engineers [232–234], (iii) the ability of an organization

to stabilize the customer requirements [213, 235], (iv) software project man-

agement quality [4, 236], (v) team issues such as aligning skills of the software

teams [221, 225, 231], (vi) reuse [16, 225, 237–239], (vii) tools that are used in

software development [240, 241], (viii) the effect of programming language on

software development productivity [16,225,242], (ix) software size [243,244], (x)

team size [240,241,243], and finally (xi) software complexity [10,16,225,231].

Based on the factors reviewed from a systematic literature review [228], we

illustrate Figure 5.1, which shows the conceptual model for the factors affecting

the productivity of software development organizations. Detailed information

on the development of the model, and a sizable majority of the studies surveyed

here can be found in [245].

5.6 The Economic Value of a Software Development Process

A software development process aims to create an economic value for all the

investors in the enterprise. Boehm [22] claims that many software engineering

projects are considered to be performed within a value neutral setting. In other

words, every task and activities are regarded equally important without con-

sidering the outcomes and business value propositions. However, researchers

suggest that many reasons (e.g. lack of utilizing project resources, fail to pri-

oritize project requirements) that cause software projects failures could stem

from the problems of value-neutral approaches [14].

84

www.manaraa.com

Productivity

Process

Motivation

Complexity

Reuse

Team Size

Requirements
Stability

Management
Quality

Requirements
Stability

Development
Tools

Programming
Language

Software
Size

Software
Complexity

Team
Location

Team
Organization

Work
Enviroment

Figure 5.1: A productivity Model Based on Factors Affecting Software Development.

According to the software engineering perspective, value creation activities

mostly focus on the economic significances; e.g. customers’ requirements and

the things stakeholders are valuing the most [17]. However, the stakehold-

ers who contribute in the value creation process have different considerations

and therefore different goals and expectation are required from the same soft-

ware system. Furthermore, they might have subjective definitions of the value.

Halling et al. considers the relationship between value and the project attain-

ment and defines the goal of a project as producing greater value than the

values of the resources consumed by the investment in the software organiza-

tion [23]. Boehm and Sullivan suggested that the best way to establish the

uttermost value from software project resources is by administering the soft-

ware development process as an economic activity of investment [246]. The

knowledge which is accumulated as the capacity of an economic activity is ul-

timately based on the human capital, which directly influences the efficient use

of physical capital [247].

85

www.manaraa.com

5.7 Human and Social Capital

The classical notion of capital states that the capital becomes apparent from the

social interactions between capitalists and laborers. In other words, it is an end

product of a social process. According to Marx, it is a surplus value captured

by individuals who control the production processes [248]. In addition, it is also

a kind of activity of investment for the resources so as to gain profit. Therefore,

capital is not only a result of the process of manufacturing but also an outcome

of trading products and goods based on the social relations between capitalists

and laborers [248].

In the last decade, this classical viewpoint has evolved to include the intangible

assets for human intensive organizations such as the economic value generated

by human and social capital. Understanding and measuring human capital is a

challenging process, evidence suggests that quality of social and organizational

relations based on several individuals’ interaction affects the sustainability of

any social structure. Human capital theory relies on the fact that laborers be-

come capitalists by accumulation of knowledge and skills and therefore, human

experiences are embedded inside the notion of capital [247]. It simply states

that the laborers who are trained in specific subjects and captured valuable

experiences in their work life somehow become irreplaceable through the pro-

duction processes, which also constitutes competitive advantage for a software

development organization. One form of human capital encompasses several in-

tangible assets such as the personal social network of resources of an individual

is also known as social capital.

Social Capital can be defined as an intangible resource, which benefits from

social connections and networking. It may include the opportunities that an

employee’s social network can provide. Lin defines social capital as “investment

of social relations with expected returns in the market place” [249, pp. 19].

Bourdieu understands the term as a presentation of actual and future resources

that are linked as a network of relationships [250]. His definition designates

that social capital is based on two components; social relationships which af-

ford possibilities to help them obtain accessibility to the resources by their

86

www.manaraa.com

relationships, and resource quality. He claims that the value of social capital,

which is based on social connections, should easily be convertible to an economic

form of capital.

There are other definitions of social capital [251]. Some are (i) a resource

that individuals yield from social structures regarding to quality of their rela-

tionships, (ii) an observable pattern in a social structure which influences the

relationships among the individuals or social groups, (iii) the quality of personal

contacts which individuals gain to increase both financial and intellectual capa-

bilities [249–251]. Fukuyama defines the social capital as “the ability of people

to work together for common purposes in groups and organizations” [252, p.

10]. Later, in his works, he considered the term as an intangible value obtained

from social groups that promotes collective outcomes. He argues that social

capital is dependent on norms like honesty, trust and dependability.

In the field of social sciences, a social network is an organized form of people

that comprises the individuals and the connections among them. In general,

individuals are considered to be connected in a fabric of social network, and

expect some benefits from the social formations and the way the network oper-

ates [253]. Consequently, social capital may be broadly defined as an intangible

resource accumulated by the social connections. Therefore, individuals should

have to be linked to one other to improve their social capital.

Social capital comprises resources to be captured by individuals [254]. Accord-

ing to Portes, social capital is inherent in the fabric of actors and relationships.

In order to own a social capital one should be linked with others, therefore, it

should be measured with quantity of social connections that an individual might

have [251]. Coleman concludes that all kinds of social structures, henceforth

relations, enable some form of social capital. In fact, the individuals intention-

ally connect with one and other to form social networks and expect benefits

from these actions [255].

87

www.manaraa.com

In this thesis, we define the term as;

Social capital is a multi-dimensional latent construct, which

usually found in the potential form of intangible resources

based on patterns of social connections and social skills of

individuals, teams or social groups who has the ability to

contribute to the economic progress of an organization.

The higher level of social capital attainable by participants of a software devel-

opment organization should help to improve the productiveness of teams and

individuals in a software firm. Consequently, leveraging the social connectiv-

ity in a software development organization shall have positive impact on the

productivity in a software development group. Aligned with the improvement

efforts, this can be considered as one of the actual benefits of social capital

obtained from networks of relations. Exploring and implementing team based

social improvements will help us to improve structural and organizational sta-

bility. It therefore enables us to constitute more cohesive information exchange

networks, which may have a positive effect on the productivity of a software

team.

Based on its qualitative attributes, social capital is a network of elements con-

sisting of nodes and links of connection. Hence, this form of capital can be

improved by creating productive patterns of social interactions. At a social

level, it is not surprising to discover that social capital can be transformed to

measure the productivity of a team or an individual of a software development

organization. In light of this information, it should be easier to create compati-

ble and productive team formations. The value of social capital is mostly hidden

in a network of interactions or connections. Hence, it could be observable in

the social activities of a software development organization.

Coleman [255] suggests that all kinds of social configurations may create some

amount of social capital. However, to gain a benefit from their existing social

capital, its relationship with social productivity should be investigated.

As previously described in the work of Narayan and Cassidy [194], we build

88

www.manaraa.com

a social capital model by using the illustration of seven dimensions of social

capital as shown in Figure 5.2.

Social
Capital

Group
Chracteristics

Generalized
Norms

Togetherness

Everyday
Sociability

Neighborhood
Connections

Volunteerism

Trust

Number of Members
Frequency of participants

Membership heterogeneity

Helpfulness of people
Trustworthiness of people

Fairness of people

How well people get along
Togetherness of people

Everyday sociability

Asking for help

Help others for their work

Trust people in neighborhood
Trust people in your team

Trust the management

Figure 5.2: A Model of Social Capital

5.8 Social Productivity

Humans are social creatures. This means they usually depend on others and

prefer to live in interacting groups (or socialites) where they influence one an-

other. In fact, they continue to be increasingly interested in establishing a

society and improving social outputs of their organized groups. Thenceforth,

they prefer to work in teams and are inclined in order to form more complex

outputs. By considering the social behavior itself as a method to exchange

goods [256], they create and share knowledge-based outcomes (in forms of ar-

tifacts), and have their experience pass through further generations so as to

improve the economic well-being of a society. Bourdieu argues that a social-

ity is circumscribed both by the available information and socially structural

establishment of human mind [257]. It is therefore not surprising to discover

that there is a strong correlation between a concrete social structure and a

productive group from a socio-economic perspective.

89

www.manaraa.com

For many researchers, productivity comprises the economic concept, however,

it also has a sociological aspect which is highlighted by Barnett “While an

economic concept of productivity is undeniably important in explaining the ma-

terial wealth of groups, personal observation suggests that understanding orga-

nized groups-including business firms-requires a sociological concept of produc-

tivity.” [258, p. 739]

Moreover, Barnett claims that social productivity occurs when a team or group

of people interact and create social interactions and outcomes, which certainly

affects the functioning of teams [258]. It should also portray the actions and

reactions of a social organization. In addition to that, he also describes social

productivity as an outcome, which can be provided from a social group activity.

As previously mentioned, software development is considered as a social activ-

ity where people should be working in close proximity. Therefore, the notion

of social productivity should measure the level of this interaction. The eco-

nomic perspective suggests that individuals’ actions are established, directed

and limited by interpersonal trust, social networks and organizations [255].

These interactions are based on group needs, values and actions of the group

and further shape new actions or action sets. Consequently, Barnett indicates

that there are mainly four constructs of social things, or main social outputs

(matters and varies among groups) an organized group produces [258]: (i) rep-

utation, in which a team is judged by its reputation which shapes its treatment

by others, (ii) symbols that can be used by organized groups also designate sym-

bolic functions for representing ties or ideas among groups, (iii) trust, which is

an expectation of an individual of others (teams or individuals) to work for the

benefit of the team as a whole, and (iv) perceptions of fairness, which state that

people receive benefits with respect to their proportion of effort [258].

Therefore, social productivity is a vital component for understanding the struc-

tural complexity in a society. All constructs defined here are, however, can be

considered as resources of a group (“ingredients of social capital”), as well as

the outcome of functioning of a group (“features of social productivity”) [258].

To understand the impacts of social issues over a software organization, we

90

www.manaraa.com

investigate the level of importance for several social factors such as trust, com-

munication, social life, and information awareness. We argue that social pro-

ductivity should be materialized by several social factors where its relationship

with the social capital should also be investigated. Here, we define the social

productivity of software development as follows;

Social productivity of software development is an intangible

asset as we termed here to reify the effects of social factors

on the social and economic landscape of a software organi-

zation. Therefore, a new kind of productivity improvement

should be considered as the transformation of social capital

(potential energy) into social productivity (kinetic energy)

form.

In other words, social productivity represents an identified stock of social cap-

ital that is transformable to value creation activities so as to form software

artifacts. The notion of social productivity seems useful for achieving software

productivity improvement goals. From a socio-economic viewpoint, it investi-

gates ways to improve collective outputs, which enable a software development

organization to make economic progress. These organizations build on the idea

of collaborative social activities, which could be an identifiable component of

teams that work in the favor of software organization.

In the socio-economic landscape of software organizations, social productivity

should represent a concept for advancing the ability of software development

organizations by understanding the factors that hinder social development and

structure. It is, therefore, important to seek ways for increasing the efficiency

and productivity of individuals, which depends on the subset of various factors

mentioned below such as quality of their social interactions, and communication

effectiveness of its members for their contributions to collective outputs, etc.

From a software development organizations perspective, social productivity is

an attempt to explain the social factors that are hindering the software devel-

opment productivity. Therefore, we select several potential factors affecting the

91

www.manaraa.com

social productivity from the literature and build our hypothetical model (see

Figure 5.3) based on these; (i) Stober and Hansmann [259] for reputation of

a team leader on conflicts and his or her skills, (ii) Dittrich [5] for identifica-

tion of communication issues with respect to level of individuals interactions,

(iii) Koh and Maguire [260] for awareness of information in turbulent business

landscapes, (iv) Hazzan and Dubinsky [261] and Anderson [262] for identifying

trust in the software teams, (v) Kelly [263] for socialization or social life in

the work environments, (vi) Hazzan and Dubinsky [261] for fairness, e.g. fair

allocation of work, and finally Churchville [264] for frequent meetings i.e. how

team members are informed about each others progress.

Figure 5.3 illustrates the model we propose based on the factors affecting social

productivity of software development.

Social
Productivity

Reputation
of leader

Trust

Communication

Team
Cohesion

Social Life

Information
Awareness

Fairness

Frequent
Meetings

Figure 5.3: A Social Productivity Model Based on Factors Affecting Software Devel-
opment.

92

www.manaraa.com

5.9 Chapter Summary

In summary, software productivity is heavily dependent on the social aspects

of productivity which can be achieved by better social alignment, i.e. matching

the roles of people better to their personality types for maximizing their produc-

tivity. In addition, it is the skills of individuals and teams that transform the

acquired knowledge into software artifacts (e.g. source code, documentation,

etc.) and constantly increase the competitive advantage.

In this chapter, we introduced several definitions concerning social and value

dynamics of a software development organization, and surveyed the literature

to highlight several factors affecting productivity of software development or-

ganizations with respect to the value dynamics and several forms of capital

namely social capital and social productivity. Based on the literature, we built

conceptual models of productivity, social productivity and social capital. The

goal was to identify several factors affecting these social constructs. In the fol-

lowing chapters of this study, we will measure the relationships between factors

and the social constructs.

93

www.manaraa.com

Chapter 6

Roles and Personality Traits

6.1 Introduction

This chapter surveys the roles in selected software development methodologies,

which is followed by an attempt to build a comparison chart for these roles.

Further Jungian personality traits are introduced and a review of the literature

on the personality traits research particularly conducted in software engineering

domain is documented.

6.2 Roles in Software Development Processes

Many different variants of development models and methodologies have been

created. In this section, we survey the roles that are defined in the literature

starting from traditional software development and working through ISO/IEC

12207, and agile methodologies such as extreme programming (XP), scrum and

feature driven development (FDD). The selection of these methodologies were

based on the following constraints: (i) the industrial popularity of those mod-

els in the software development landscapes, (ii) the academic popularity that

are mostly mentioned in the academic papers. Ultimately, these development

models become business and de facto standards for software development orga-

nizations.

94

www.manaraa.com

6.2.1 Content Analysis of Software Development Roles

In this subsection, first we survey the literature for the roles for both traditional

and agile methodologies that are mentioned in the previous section. We con-

duct a thematic content analysis (i.e. descriptive presentation of this literature

review) based on roles as the units of analysis.

Content analysis is an organized study of characteristics found in a content of

any type of communication, such as books, websites, newspapers [265]. Our

approach uses the content analysis technique for making interpretations to cre-

ate a role selection schema based on literature of roles in software development

methodologies. Based on the survey data collected previously, these roles will

be systematically compared to their industrial actualizations.

To this end, we first collect data from literature and rigorously classify them.

We form a number of acronyms based on the roles that are found from the

literature. Here, we are making partial use of a coding mechanism to construct

a role-based schema with the defined roles from the literature. The coding aims

to create variables based on the roles defined in software development. It is done

for easy comparison of roles by constructing a unique key for each role found

from the literature. Our coding schema allows us to observe the commonalities

and differences between software engineering roles. It helps us to investigate the

cause-effect relationships, interrelationships, and situational conditions for each

role category. Here, we design several questions to seek validity for our coding

in the defined categories, and analysis of identified roles from the literature.

• Is this role the same as a role in the other categories?

• Are there any duplicated role codings in a category?

• In which context do these roles emerge?

• What kind of roles have changed or evolved in the emerging methods?

• Is there any observable change for other roles when a role evolved to an

other form (i.e. covariance between categories)?

95

www.manaraa.com

The objective coding [266] is a technique to review a collection of documents

for extracting and indexing the information so as to form a new perspective on

representing the data. We use an objective coding scheme on the collected in-

formation of roles. This coding is helpful for visually comparing the actualized

roles systematically with the ones cited in the literature. In the following sub-

sections, several tables with assigned codes are built and ultimately a diagram

is drawn to explore the relationship among roles.

6.2.2 Roles in traditional software development

Software engineering teams address the complex problems of software devel-

opment by sharing the tasks among its members with respect to their roles.

Roles are the descriptions of duties or assignments and competence for par-

ticipants that are required to achieve defined tasks and activities of software

development [43]. In his essay, The Cathedral and the Bazaar, Raymond states

that because of the strict roles defined in the traditional software development,

traditional approach is similar to building a cathedral, where a small team of

people work in an isolated environment [267]. Therefore, this could be consid-

ered as a drawback because several artifacts are only visible to a limited number

of individuals in this setting.

Code Role Name Primary Type of Value
PPM Project Manager Resource Allocation and Budgeting
SD Software Developer Development Activities
ST Software Tester Creating Test Plans
UID User Interface Designer Design Screen Interfaces
DD Database Designers Data Modeling
SAR Software Architects Software Modeling
BA Business Analyst Stakeholder Management
RE Requirement Engineer Gathering Requirements
SQA Software Quality Assurance Creating and Maintaining Quality
SAN System Analyst Construction of a System

Table 6.1: Traditional Software Development Roles

Traditional roles includes the following: Project manager who is responsible

for allocation of resources, project expenditures, and responsible from the gen-

eral objectives of a software project. A software developer is responsible for

designing and maintaining the software programs, whereas a software tester is

responsible for creating test plans and testing the developed programs. In many

96

www.manaraa.com

cases user interface designers (design screen interfaces), database designers (de-

sign database schema) and software architects (design technical blueprints) are

also included as a generic software practitioner category. A business analyst

is not only responsible for solving the problems by regulating the connections

between the business and the technical people but also for documenting several

parts (e.g. requirement documents) of a software project. In addition to these

roles, some others can also be seen regarding several needs; e.g. requirements

engineer, systems analyst, software quality assurance engineer (see Table 6.1) .

Code Role Name Primary Type of Value
RO Requirements Owner Understanding Need
SDR System Designer Accomplishing work
SA System Analysis Reducing Risks
VV Validation & Verification Mitigating Risks
LO Logistics and Operations Understanding need
G Glue among the subsystems Accomplishing work, Reducing Risks
CI Customer Interface Understanding the Need
TM Technical Manager Technical Management
IM Information Manager Knowledge Management
PE Process Engineer Managing and Understanding Needs
COR Coordinator Organizational Management
CA Classified Ads SE Accomplishing Work (assumed)

Table 6.2: Systems Engineering Roles and their values from [268]

Sheard [269] identifies twelve roles (see Table 6.2) of development from the

system engineering viewpoint while investigating the relationship between the

roles and their importance for creating a value. This work not only suggests

that the value is asserted in qualitative terms and it should be quantified in

further research but it also claims that it should be observed as a requested

improvement within a product by better (i) definition of the requirements, (ii)

management strategies, (iii) ways for mitigating risks, (see [268] for details).

6.2.3 Roles in ISO/IEC 12207

ISO/IEC 12207 [46] has three main groups of roles for its participants. The

first group consisting the principal roles are the acquirer, who is a form of

stakeholder that obtains products or services from supplier, who is an individ-

ual or another organization agree on providing a software products or services.

The Implementer executes development tasks, while the maintainer can be ei-

ther an organization or an individual who performs the upkeep of developed

97

www.manaraa.com

software; and operator is responsible for the execution of a system [46]. The

second category consists of configuration and supporting roles: the configura-

tor is responsible for the establishment and transformation of the information

needed by an individual or a group; the evaluator tests and measure a software

process or a product by using the data collected during the actual tasks that are

performed; the auditor investigates the products and processes’ compatibility

with the agreements; the usability specialist deals with the demands and needs

of the stakeholders such as the design activities based on human factors and

skills and their fulfillment [46].

Code Role Name Primary Type of Value
AC Acquirer Software Client or User or Product Owner
SU Supplier Software Producer, Product Seller
IMP Implementer Realization of Development Tasks
MN Maintainer Maintain the Software
OP Operator System Execution
CFG Configurator Accomplishing Work, Reducing Risks
EV Evaluator Test & Measure a Process or a Product
AU Auditor Contract Management
US Usability Specialist Problems Regarding to People Factors
MA Manager Managing
AM Asset Manager Managing Assets
KM Knowledge Manager Knowledge Management
RA Reuse Administrator Seeking for Reusable Parts

Table 6.3: Roles in ISO/IEC 12207 (adapted from [3, 46])

The third group has the organizational roles (see Table 6.3), the manager iden-

tifies and manages the state of the play (i.e. condition and progression of the

project) with respect to project constraints (e.g. objectives, budget, schedules),

the asset manager is a type of manager who deals with the management and

optimization of the assets regarding the plan he or she prepared, the knowledge

manager works on the collection of particular knowledge and skills throughout

the organization and uses this for the improvement of the products and ser-

vices. The reuse program administrator seeks to find favorable or advantageous

circumstances for reusable parts of a product or a service. Unlike the other two

subfields of software engineering (i.e. requirements engineering and software

development), domain engineer is a form responsible for designing the domain

models (i.e. software models) and domain descriptions for a software system.

98

www.manaraa.com

6.2.4 Roles in Extreme Programming

According to Beck [58], the participants and their roles are as follows (see

table 6.4); Programmers are the individuals who need to have good communi-

cation and collaboration skills for both team and individual levels. They are

responsible for developing, maintaining and testing the software. One of their

main responsibilities is to ensure that their work is clean and lean. The pro-

grammers make the technical decisions. Customers form the steering teams in

business terms and in particular in requirement satisfaction decisions. Testers

help customers to write functional test cases. Business decisions are made by

customers [58]. The tracker role composes a trace and feedback mechanism in

XP. The estimations, goals and iterations made by teams are controlled by a

tracker, who provides feedback. The tracker is also responsible for measuring

constraints such as scarce resources and delivery times versus goal evaluation.

The coach is accountable for XP project, who needs to understand the prob-

lems occurring during the process to instruct team members and transfer the

information or sometimes experience among teams and individuals. Finally, the

manager is responsible for final decisions, and also one aim of this role is to

recognize problems likely occur during the development life-cycle.

Code Role Name Primary Type of Value
PRG Programmers Maintaining and Testing Software
CU Customers Managing Business Decisions
TS Testers Helps Costumers for Functional Test Cases
TRC Tracker Feedbacks and Estimations
CO Coach Supervise Team
CON Consultant Guides the Team for Problem Solving
MAN Manager Management

Table 6.4: Roles in XP (adapted from [58, 270])

6.2.5 Roles in Scrum

Schwaber and Beedle [59] single out six roles for the participants of Scrum

(see Table 6.5). The Scrum Master is a type of management role specific to

Scrum, who is responsible for the alignment of practices and rules, as they have

organized. This role interacts not only with project team but also customer and

management. Its aim is to maximize productivity by practicing the agile and

99

www.manaraa.com

scrum values and monitoring the team to avoid any kind of complications. The

Product Owner is responsible for exercising the project management and control

activities. Additionally, he is also responsible for transforming the product

backlog into product features. Scrum Team should be considered as a self-

organizing team to produce a working piece of a product, where the team’s

main goal is to achieve time targeted objectives of each sprint. The customer

will continuously evaluate the backlog items, and helps the selection for a sprint.

The management is responsible for implementing the proper standards for the

software development process. Additionally, this role encompasses decision-

making activities and finalizing them at different stages of development process

such as evaluating goals, gathering requirements, etc.

Code Role Name Primary Type of Value
SM Scrum Master Managing Scrum Team
PO Product Owner Product Management Decisions
CUS Customer Evaluation of backlog items
STM Scrum Team Organized itself for time boxed goals
MNG Management Evaluate Decisions and Goals
USR User Evaluate System Functionalities

Table 6.5: Roles in SCRUM (adapted from [59])

6.2.6 Roles in FDD

FDD has the most comprehensive role description via flexibility of roles [60]

(see table 6.6). For example, an individual can play multiple roles, or a role can

be shared by multiple persons [270]. The three main categories of roles: key,

supporting and additional roles. The key roles are project manager, who admin-

isters the entire project and maintains the work settings of the software team,

the lead software architect, who makes the appropriate decisions for software

development, and the software development manager, who focuses on daily ac-

tivities and team negotiations during the software development activities. The

lead programmer, the class owner and the domain expert are the three roles

used in FDD. The supporting roles include manager (release), knowledge ex-

pert, build process engineer, toolsmith and system administrator. Moreover,

testers, technical document expert and software deployment personnel are the

other roles used in these practices [60].

100

www.manaraa.com

Code Role Name Primary Type of Value
FPM Project Manager Resource Management
LSA Lead Software Architect Architectural Decisions
DEM Development Manager Evaluation of backlog items
LP Lead Programmer Organized itself for time boxed goals
CLO Class Owner Form Teams for Implementing Features
DE Domain Expert Inform Teams for Adequate Features
RM Release Manager Managing the development process
DM Domain Manager Managing Domain Experts
LG Language Guru Acquiring a Knowledge on Technology
BE Build Engineer Executing a Build Process
TO Toolsmith Creating Utilities for project
SYA System Administrator Administration of Work Systems
TE Testing Verifying the Actualization of a System
DEP Deployer Release of Feature Deployment
TEW Technical Writer The Documentation for Users

Table 6.6: Roles in FDD (adapted from [60, 270])

6.2.7 Roles in People CMM

The People CMM (PCMM) [271] is an organizational change management sys-

tem that operationalizes the capabilities of the workforce by using the actor and

role based elements. It suggests practices that are not specific to organizations

and therefore PCMM implementations may have a different selection of roles

specific to a software organization. There are several roles for the individuals

that are responsible for organizations workforce activities identified as follows:

(i) executive managers who are responsible for long term goals and preserving

resources for long term improvements, (ii) managers who are managing individ-

uals during their activities regarding to their area of authority, (iii) individuals

and workforce (i.e. a set of individuals) who are responsible for the roles that

are assigned with respect to business plans where there is no limitation for any

individual to perform more than one task or role [272].

In addition, PCMM has five maturity levels. At level two, the roles inside

the organization have responsibilities within the process areas. Starting at

level three, individuals with more responsibilities emerge such as process owners

or competency managers who may have broader authorities whereas the role

called human resource function is responsible for recruiting, hiring, training,

coordinating activities of the workforce, and regulate the relationships among

the individuals so as to improve the organizational values [272]. Although

PCMM is the only model that aims to align the capabilities of workforce and

101

www.manaraa.com

related roles with the organizational human resources, in the model there is

no visible association between these elements and the role descriptions and its

characteristics, which are informally represented [3].

6.2.8 A Summary of Roles Contained in Selected Models

In this chapter, we highlight how roles in literature and their actualizations

on industrial environments vary for both traditional and agile methodologies.

Software development is a collaborative endeavor that depends on its develop-

ment methodology. However, selection of a proper methodology is not enough

for achieving goals of a software organization. The evidence suggests that we

should also tailor the necessary roles depending on development activities.

After analyzing the defined categories in light of the questions above, we con-

firmed that several roles presented in traditional methods are emerged with a

different name, with similar responsibilities in newer approaches. Some of the

roles, however, have their responsibilities changed while implementing in differ-

ent software development organizations. In addition, we introduce the role-job

description sets, which identifies how a job fits to the role structure of a software

development organization.

Role-Job Descriptions
Actor Based Activity Based Artifact Based Extended

Models Traditional X
System Engineering X X

ISO/IEC 12207 X
XP X X X

Scrum X X
FDD X X X X

People CMM X X X

Table 6.7: Comparison of Role-job Descriptions

Here, we present role-job descriptions for the selected software development

methodologies as shown in Table 6.7. We identify four types of role-job de-

scriptions: Actor-based, activity-based, artifact-based and methodologies with

extended role definitions based on a previously defined role. For example, both

scrum and FDD have actor-based roles, in which the skills of an individual are

defined by the role characteristics such as product owner or a class owner. In

addition, all methodologies have activity-based roles such as a software devel-

102

www.manaraa.com

oper or a software tester. We also consider roles that are based on a creation of

an artifact, which are highlighted by the agile methodologies. Finally, extended

roles are the roles that can be integrated or shared among the individuals such

as the roles like the domain expert role, which somehow comprises the technical

writer role in FDD.

6.2.9 The Roles Wheel

Our analysis exhibits that a role-based schema can be useful for a tailoring

process of roles regarding the organizational needs. Furthermore, we argue

that a software development organization should customize their own roles to be

suitable for their social structure, where we suggest that our role based construct

(see Figure 6.1) will be beneficial for such activities. In other words, it enables

them to select appropriate roles for their software development methodologies.

Consequently, by using such a framework, a software team may easily choose

or customize the necessary roles based on their activities.

The analysis of identified roles from the literature is portrayed in Figure 6.1. It

is evident that several roles presented in older methods emerge with a different

name with similar responsibilities in newer approaches. The roles, however,

mostly have their responsibilities changed and reappeared as another form while

revealing in different software development organizations. Most frequently, the

role definitions that an organization uses should be based on a domain and a set

of circumstances. Moreover, we suggest that the role selection should be based

on the social structure of an organization and required interactions. Ultimately,

the customized roles are found to be organizational centric, which also clearly

supports the notion of separation of concerns [201].

103

www.manaraa.com

Roles

Figure 6.1: A Summary of Roles Contained in the Different Approaches

6.3 Personality Research

The field of psychology offers numerous definitions of personality. Although

different opinions still exist, there appears to be some agreement that the no-

tion of personality refers to all those characteristics that make every person a

distinctive individual. Although the dimensions of personality are found to be

dynamic and evolve over a period of time,“... there is a core of consistency

which defines the individual’s true nature: the unchangeable spots of the leop-

ard. In other words, there are differences between individuals that are apparent

104

www.manaraa.com

across a variety of situations” [36, pp. 37]. According to American Psychiatric

Association, personality is “...enduring patterns of perceiving, relating to, and

thinking about the environment and oneself that are exhibited in a wide range

of social and personal contexts” [273, pp. 686].

A theory of personality types was introduced by Jung [274], who has established

the classification of people with an orthogonal set of characteristics, which re-

veals individual’s personality differences. The goal is to understand how and

why individuals process a situation or an event and further function in both

mental and emotional aspects represented by the traits. Based on the theory

of Jung, Kathrine Myers and her daughter Isabel Briggs designed a question-

naire called Myers-Briggs Type Indicator (MBTI). Different from Jung’s initial

pairs, they suggested a novel attitude pair termed as perception versus judg-

ment. The aim is to operationalize Jung’s work in order to categorize people

in terms of their personalities into 16 different psychological types, where the

types were considered a combination of four preferences [275, 276]. Moreover,

Myers and Briggs define these types based on the four preference pairs (EI, SN,

TF, JP) or sometimes called dichotomies, namely; extroversion-introversion,

sensing-intuition, thinking-feeling, and judging-perceiving, as illustrated in Ta-

ble 6.8. According to the theory, each person has one preference from each

of these bipolar factors and uses four out of the eight preferences (e.g. ISTJ,

INTP, etc.).

Extroversion (E) (I) Introversion
Sensing (S) (N) iNtuition
Thinking (T) (F) Feeling
Judgment (J) (P) Perception

Table 6.8: Dichotomies (the four opposite pairs of preferences)

Despite the opposing views, some researchers argue that the psychometric prop-

erties of the identified pairs of preferences lack statistical validity [39], which

may not be used as the absolute personality measure but useful to view the

traits in a continuum [277]. From an industrial perspective, however, it is still

one of the most widely used personality test [278].

There are several differences proposed to identify these dichotomous pairs. For

105

www.manaraa.com

instance, the notion of being either extroverted (E) or introverted (I) shows the

different preference of people and particularly the types (direction) of energy

they have such as enjoying parties, meeting with new people or otherwise ac-

tivities like reading, etc. Furthermore, socio-type (E) indicates the individuals

who posses a positive altitude to social learning and prefer to have interactions

to regain their energy whereas (I) types are the individuals who are seekers of

knowledge and connections among them, thus individuals who prefer intercon-

nected ideas of concepts and abstractions. Sensing (S) and Intuition (N) is the

preference to process the data. (S) type prefers organized details and observable

facts over the imagination to visualize. In contrast, (N) people are interested in

the future and trust their gut feelings. Thinking (T) and feeling (F) dichotomy

deals with how an individual makes decisions. The socio-type (T) seeks to ob-

serve cause and effect and logical sequences where justice and decency is more

important than the other factors. On the other hand, (F) type is more personal,

and less objective, so inclined to align herself with people of oriented concerns

and their value dynamics since they enjoy in working social groups and its har-

mony. Finally, the preference between (J) and (P) dichotomies shows the path

in which individuals view the life; whether one could prefer to be conclusive and

systematically organized and deadline driven or otherwise more instinctive, and

less organized but may be more adaptable to changes.

6.3.1 Jung’s Model of Cognitive Modes

Earlier research suggests that personality traits encompass patterns of action

in different situations, which should also need to have features like adaptability

to the environment when needed. In his book Personality Theory, Jung [274]

claimed that attitudes and functions of consciousness should be differentiated.

In general, a decision process can be characterized by two actions; (i) retrieving

the information from the environment, and (ii) making a decision based on this

information. During these activities individuals may evaluate information by

either their own memory and intellect, which is called introverted perception

(Pi) functions or otherwise by equating a collective standard as seen in extro-

106

www.manaraa.com

verted perception (Pe). Accordingly, for judging trait, there are also introverted

and extroverted viewpoints. Individuals who perform introverted judging (Ji)

usually compare their decisions by their own intellectual knowledge bank. By

contrast, individuals with extroverted judging (Je) examine decisions based on

the norms or the rules that are previously established. These functions are

considered to work synchronously for the process of decision-making for every

individual, although some might perform better for than others.

Table 6.9 outlines Jung’s cognitive Modes for both information collection and

decision-making processes of individuals adapted from [279].

Extroverted Extroverted Extroverted Extroverted
Sensing iNtuition Thinking Feeling
Experimentation Ideation Organization Community

Introverted Introverted Introverted Introverted
Sensing iNtuition Thinking Feeling
Knowledge Imagination Analysis Evaluation

Table 6.9: Jung’s Cognitive Modes

6.3.2 Personality Research in Software Engineering

A considerable amount of literature has been published on personality research

in software engineering where most of these studies were conducted using the

MBTI [280]. A number of other instruments were designed to assess person-

ality traits such as Keirsey [281] temperament sorter, which uses an MBTI

compatible scale.

Preliminary work on the impact of personality traits on software team structures

was undertaken by White [282], who reported that the diversity in personal-

ity traits were beneficial for dealing with a number of software development

activities. Kaiser and Bostrom [283] conducted a study, which confirmed that

personality types have a significant impact on the success of a management

information systems team. They hypothesized that successful project teams

usually include a variety of personality types. Consequently, it was claimed

that the absence of feeling (F) personality type in a team directly affects the

project success. By using Keirsey temperament sorter, Rutherford [284] con-

ducted a study to build project teams for software engineering classes. Likewise,

107

www.manaraa.com

he concluded that a team with a variety of personalities had more skills in prob-

lem solving. In addition, based on the MBTI scale in their ethnographic study

Karn and Cowling [285] conducted a performance analysis of student teams

by comparing team effectiveness in yearly basis. Their findings also suggest

that building heterogeneous teams in terms of individual personalities brought

different ideas to teamwork, which improved the team’s productivity.

To improve pair forming process and its effectiveness, Sfetsos et al. [286] empir-

ically investigated the effect of MBTI personalities and Keirsey’s temperaments

over novice (student) developers in pair programming. Their study compiled

with the idea that pairs with diverse personalities were more effective than

homogeneous team of pairs. Based on the MBTI personality traits, Dick and

Zarnett [287] claimed that pair programming was only suitable for a limited

number of people, and therefore a preference should be set based on the traits

of individuals in a team. In addition, Karn et al. [288] conducted a qualita-

tive analysis to investigate how dynamics of software teams can be related with

personality type research, particularly for XP projects. The results of this anal-

ysis indicated that (i) personality type configurations were important for team

effectiveness, (ii) teams with high cohesion were found more competitive.

Prior studies that have noted the importance of personality research in software

engineering point out that the socio-type ISTJ was found as the most frequent

trait in this particular domain. Bush and Schkade [289] found 25% of scientific

programmers are ISTJ, where Buie [290] singled out 19% of programmers, and

further Smith [291] found 35% of system analyst were ISTJ. A two phased

MBTI based study by Turley and Bieman [292] reported that the programmers

in their small empirical sample were mostly found to be introverted (I) and

thinking (T) type.

From an industrial point of view, Hardiman [293] investigated the traits of

software engineers who were found to be ENTJ, INTJ, ESTJ, ISTJ, ISFJ,

and ENTP. He claimed that individuals with NF trait suffered from a lack

of process-based thinking. However, a limitation of this study was that the

numbers of participants were relatively small. Carpetz [294] surveyed software

108

www.manaraa.com

engineering students by using an MBTI scale, which also found that introverted

and thinking types are more than extroverts. In this work, the number of socio-

type ISTJ was also found more than the other types (24%). The details about

the results of ISTJ dominant surveys were also summarized in [294]. Moreover,

Carpetz concluded that a variety of personality types should form better teams

to improve the quality of products.

Sach et al. [295] analyzed five different studies conducted to investigate MBTI

preferences in the software engineering domain where they found that these

studies supported each other. In general, for example, thinkers (T) were com-

monly higher than feeler (F) type. Detailed examination of the relationship

between personality types versus variance of performance in code review by

Da Cunha and Greathead [296], who proposed that a productivity difference

among the individuals might emerge when teams were organized according to

their personality types. In contrast with some of the previous findings, their

study reported that only 6% of their sample set was ISTJ.

In a study in 2004, Gorla and Lam [297] reported personality traits of 92 per-

sonnel practitioners that were structured in small teams using Keirsey’s temper-

ament sorter. Their goal was to find a possible connection between personality

traits of teams and their performances. Not surprisingly perhaps, it was found

that extroverted individuals communicate better than an introverted person-

nel, therefore extroversion was a preferable type of personality particularly for

tasks that requires more social interactions. From a traditional viewpoint, they

argued that personality traits known as sensing (S), and judging (J) are more

suitable as programmers’ characteristics.

In recent years, there has been an increasing amount of literature reporting that

the personality of software development practitioners known as less socially in-

teractive type begin to change due to several reasons such as a set of roles that

emerged with different social requirement for success, e.g. system analyst, in-

terface designers or software testers, etc. To investigate the personality types of

Cuban software developers, Varona et al. [298] surveyed 103 individuals where

the analysis reveals that one of the most conspicuous personality characteris-

109

www.manaraa.com

tics was ESTJ. In accordance with this, one of the recent findings by Varona

et al. [299] points out a significant change in preference, from traditional intro-

verted software engineers to the extroverted trait where they also identify that

people with more social skills were needed to deal with the complexities of new

software projects.

Taken together, an implication of previous research on personality traits demon-

strates that it is important to reveal the personality traits in a software team [300].

Such a team with a variety of different skilled people with distinctive perspec-

tives should be beneficial to cope with the dynamic tasks of a software de-

velopment process [301]. For instance, some of the personality traits such as

introversion vs. extroversion may have more impact on one development phase,

and can be used for selecting individuals for the different stages of a software

development process with respect to their so-called soft skills [302]. As a con-

sequence of the growing complexity of software development activities, there

is no single personality trait found that fulfills all roles in software develop-

ment. Moreover, an ethnographic study targeting the actualization of MBTI

measures on software teams by Karn and Cowling [303] reached a conclusion

that specific personality traits are more gravitated towards some specific type

of development activities, as well as the roles.

From an industrial perspective, MBTI is considered as a useful tool in the ser-

vice of exploring the social characteristics of the software practitioners during

the activities of software development [40]; however, there is no systematic and

rigorous method to relate the personality traits of software practitioners to the

formation of a software team structure in the literature. Kaluzniacky [40] agrees

with this pointing out that a tool for assessing the personality characteristics

of IT practitioners should be constructed. In addition, most of the research

conducted in MBTI literature is qualitative, which means that the research to

date has tended to focus on individuals who can either be found extroverted

or introverted without any quantification such as percentage of extroversion

level. This study aims to measure the dichotomies of personalities on a quan-

titative scale, which can be useful particularly for illustrating the personality

110

www.manaraa.com

characteristics on team level.

6.3.3 Personality Temperaments

As defined in the previous section, the term personality tends to be used to refer

to a set of characteristics based on the thoughts, emotional and behavioral pat-

terns that constitute our talents, emotions, habits, and skills, which are specific

to an individual. The term temperament, however, is generally understood to

mean a set of personality traits inherited such as intelligence and the acquired

dispositions such as background, social and cultural history, etc. [304]. Allport

defines temperament as a component that refers to emotional nature of indi-

viduals [305], e.g. sensitivity to provocation, responsiveness, ability to keep the

intensity of mood, etc. Therefore, the notion of temperament can be considered

as an intangible substratum (i.e. a basis or a foundation) for a consequent ad-

vancement of personality characteristics based on various life experiences that

affect an individual’s basic inclinations [306].

For Keirsey, temperament is of four kinds [281]:

• Stabilizers (Guardians): This temperament can be found in cooperative

traditionalists, who values protection and stability the most; they prefer

to be part of an organization, and like to live by the rules. Mostly, they

are found to be reliable and hard working individuals.

• Improvisers (Artisans): They are equipped with advanced tactical skills,

and are the most talented group of individuals on using a tool such as

software, screwdriver, language, etc. They are mostly realistic, sometimes

unconventional, freedom lover, and their favorite expression is carpe diem,

i.e. seize the day.

• Catalyst (Idealists): The people in this temperament are known to be

the most communicative type. They are politic, enthusiastic, intuitive,

sometimes more romantic and spiritual. They love gaining knowledge

and self-improvement, and also like to guide individuals on these kinds of

quests.

111

www.manaraa.com

• Rationalists (Theorists): This group of people are famous with their logic

and problem solving skills. Mostly, they are skeptic, pragmatic, and inde-

pendent. They don’t prefer to work on understanding how things work.

They are not good at diplomacy, and sometimes not in digesting details.

Figure 6.2 illustrates the relationship between Keirsey’s temperaments and

MBTI personality types adopted from [281]. Keirsey’s personality classifica-

tion starts with understanding the way an individual responds the world either

perceiving concrete or abstract realities. The individuals’ several concerns that

correspond the four key characteristics can be listed as follows: (i) guardians are

the concrete cooperators who represent the logistic intelligence, and the ability

to differentiate the problems using logistic interpretations, (ii) artisans are the

concrete utilitarians who have the tactical intelligence which helps them to aim

for shorter time-frames to achieve goals, (iii) idealists are the abstract cooper-

ators with diplomatic intelligence who have the skills to decide the factors for

bargaining, and lastly (iv) rationalists are the abstract utilitarians who have the

strategic intelligence, which helps them to achieve long term objectives [307].

112

www.manaraa.com

Figure 6.2: The Personality Wheel

6.3.4 The Periodic Table Approach

The abstract notion of a periodic approach relies on the fact that there is an

axiomatic relationship among a group of entities [308]. However, common form

of a periodic table comprises rows and columns in which the classification is

made by the entities placed across or down the table. For the purpose of

studying the interpretations of the individuals in software teams based on their

personality traits, we compile a periodic table-like structure. In the context of

this study, a periodic table system is a compilation of the characteristics in a

compact form for classifying sixteen forms of personality traits. Basically, it is

a tabular depiction of the personality traits (see Figure 6.3), which is organized

with respect to a set of commonalities among the personality characteristics.

To facilitate the study of the relationships of personality traits, we propose a

periodic table-like structure. In this type of representation, commonly, rows

113

www.manaraa.com

Figure 6.3: The Periodic Table Type Classification for Personality Types

and columns represent a classification with different attitudes whereas the op-

posite ends of a continuum are based on the features of the taxonomy. The

traits horizontally are divided into two layers based on the social attributes,

i.e. a row represents either extroversion and introversion group layer. The

vertical columns on both sides of the table designate the level of rationality

and emotionality of the traits, i.e. altruistic through individualistic. The verti-

cal columns inside the table are formed regarding to individual’s negation and

social stabilization skills.

Table 6.10 provides a periodic table-based visualization of a team-based snap-

shot for a software organization in terms of practitioners’ personality traits.

The periodic table is employed as a team illustration format with which we can

use to visualize all software teams inspected in our study.

114

www.manaraa.com

ENFJ(%) ENTJ(%)
INFJ(%) INTJ(%)

ENFP(%) ESFJ(%) ESFP(%) ESTP(%) ESTJ(%) ENTP(%)

INFP(%) ISFJ(%) ISFP(%) ISTP(%) ISTJ(%) INTP(%)

Table 6.10: Periodic Table of (%) Personality Traits of a Software Development
Organization

Bradbary and Garrett [309] indicate the benefits of using personality tempera-

ments in software team management as follows:

“....Say you’ve got a problem that needs a novel solution. Assign an

Inventor (ENTP) or a Crafter (ISTP) to handle the job. Both thrive

on ingenious problem-solving; they’re good with Gordian Knots. If,

on the other hand, you’ve got a large, messy project that needs to be

organized and whipped into shape, call on a Field Marshall (ENTJ).

These little Napoleons know how to regiment people and resources

alike (hence their name). Architects (INTP) are good at big, com-

plex problems that need fine-tuning its the nature of their intellect

to tweak and tinker. And Counselors (INFJ) have a talent for issues

that need a touch of tact and empathy.” [309, pp. 37].

Table 6.11 illustrates a periodic table-based visualization of software teams,

which shows the corresponding Keirsey Temperaments.

Teacher Fieldmarshal
Counselor Mastermind

Champion Provider Performer Promoter Supervisor Inventor

Healer Protector Composer Crafter Inspector Architect

Table 6.11: Periodic Table Representation of Temperaments

To sum up, the periodic table form gives a complete visual representation of

MBTI based personality types classified by using the temperament information

extracted from Keirsey’s book [281], which demonstrates the benefits of external

representations of practitioners in software teams. Ultimately, a goal is to

investigate the relationships between the personality characteristics of team

members and social structures of effective team configurations.

115

www.manaraa.com

6.4 Chapter Summary

This chapter highlighted the importance of roles and personality traits in soft-

ware engineering landscapes. In order to identify and compare different roles

in software development activities, we built a framework for comparison of

software development models, covering traditional approaches through to agile

techniques. Furthermore, we built a comparison schema of roles for the selected

development methodologies, which can be useful both in academic and indus-

trial aspects. In particular, the approach can be beneficial when selecting the

proper roles for a tailored software development process.

The latter parts of this chapter outlined the Jungian personality types, and con-

tinued with a literature review of personality research in software engineering.

It concluded with a novel idea later we use in our empirical studies - a peri-

odic table form. The goal was to visualize a team with respect to personality

temperaments of its participants. What’s more, it could be useful for assigning

practitioners on software teams based on their personality characteristics, and

providing feedback on the team dynamics. This also enables the participants

in a software team to know more about the personality types of other members

of that team.

In the following part of this thesis, we will detail the research processes and the

first chapter is going to present the empirical analyses and their findings from

the two industrial case studies.

116

www.manaraa.com

Part IV

Empirical Contributions

117

www.manaraa.com

Industrial Case Studies

This part of the thesis presents two industrial case studies conducted in a mid-

dle size software company. It outlines the descriptions about the population

samples, the techniques and methods used for data processing and the analyses.

Firstly, Chapter 7 introduces the industrial case study conducted for investigat-

ing the factors affecting software development productivity. Secondly, Chapter

8 discusses the findings of an industrial case study conducted for revealing the

personality types of individuals for understanding effective team structures.

118

www.manaraa.com

Chapter 7

Empirical Findings: Case Study I

Structural
Equation
Model l ing

Case
Study I

Survey
Research

Grounded Theory Case Study IIGame Playing

Industr ial Implementat ion

Research Requirements

Empirical Evaluation

Figure 7.1: A part of the conceptual overview of the research

7.1 Introduction

This chapter aims to enhance our understanding of the factors affecting an or-

ganization’s social and economic structure so as to improve the productivity of

software development. We present an approach for identifying the many fac-

tors affecting the development productivity and enhance our understanding of

119

www.manaraa.com

productivity as a latent construct. To demonstrate the relationship between

observed indicators and latent constructs of productivity, we build and empiri-

cally test a series of structural equation models (SEM) with data collected from

216 participants from a medium-sized software company (see e.g. Figure 5.1).

Secondly, researchers analyze the impact of a set of team-based variables for sub-

stantial productivity improvements. In light of these, several important factors

found in the literature in Chapter 4 are tested for measuring the relationships

among the latent constructs.

7.2 Data Collection

After discussing our research objectives with a number of companies, we se-

lected a middle-sized software development organization, Simurg1. The first

reason was that they were willing to participate in the research. Secondly, the

company employs more than four hundred people. Therefore, the size was ad-

equate, likely to increase the reliability of outputs. What is more, the manage-

ment group of Simurg was interested in the factors affecting their productivity,

and therefore they were willing to contribute to the study with more accurate

findings. Consequently, survey questions were developed from the factors found

in the literature, and their content validity was reviewed by the management

team. Additionally, Simurg is an organization in which development activities

occur in multiple locations, and the number of software teams vary between four

to forty members. This would increase our chances of for observing different

team configurations especially required for the second part of this study.

To evaluate our hypothetical model with the empirical data, we developed a

survey instrument based on two different resources: (i) literature review of

the factors of productivity, social productivity, and social capital affecting a

software development organization, (ii) focus group study conducted with the

management team. Furthermore, we examine a set of the documentation and

a series of case reports previously prepared about organizational productivity.

1To protect the identity of the firm, we will use a fictitious name.

120

www.manaraa.com

7.2.1 Industrial Focus Group

After having chosen factors of both productivity and social productivity, a focus

group study was conducted to investigate the opinions of software management

teams in Simurg. The goal of the focus group study was to identify the opinions

from industry about the most important factors that are affecting productivity.

The discussion group was composed of nine personnel from the management

team (total ten participants). As suggested by Krueger [310], the session was

facilitated by one of the authors who commenced an introduction to encour-

age participants and initiate the discussion setting. We asked the management

team about their opinion on productivity factors and one individual from the

management team took notes. A guide containing five questions and a prelim-

inary model of social productivity was prepared for the focus group discussion:

(1) What is your definition of productivity in software teams?, (2) What is your

opinion of the factors that are affecting the productivity?, (3) Which one do

you think is the most important factor among these ones for productivity?, (4)

How would you describe the social factors of productivity?, (5) What social

factors do you think are affecting the productivity?

The participants discussed the social aspects of productivity including the im-

pacts of social values over productivity, the communication frequency, coordi-

nation efficiency, team augmentation, and task rotation. In addition, the group

discussed the selected items from the software productivity literature. In short,

this focus group activity provided us with an opportunity to discuss our ideas

about productivity factors in an industrial setting. We refined our list of factors

found from the literature by using the information provided in this session.

7.2.2 Survey Instrument

The questionnaire had questions about the potential factors from literature of

software development productivity using a 5-point Likert scale grading between

strongly agree (5) and strongly disagree (1) for productivity (see Appendix A).

Additionally, the survey had several questions like gender, years of work expe-

rience of the participants in this company as well as the ideal team size and

121

www.manaraa.com

the actual size of their software team. The survey questions were developed to

measure the relationships between the observable factors and latent constructs

of productivity. To ensure proper interpretation of each question, we worked

with several experts from Simurg’s management team. In light of these efforts,

a set of survey questions were constructed, and refined. Ultimately, the man-

agement team of Simurg announced the finalized version of the survey at their

internal web-portal.

To increase accessibility, a variant of the questionnaire was prepared with the

LimeSurvey. It is an open source web-based tool for conducting surveys, which

was employed as the primary instrument of data collection. The survey ran

approximately for one month, which has 57 questions and also has an intro-

ductory letter and confidentiality statement. To increase the understandability

of questions, we built five question categories that were presented in saveable

web-based sessions. The five categorical parts represent five different aspects

that we were investigating. It was also used as a stopover for participants and

to store their answers if need be. Although nearly all members of the company

are bilingual, our survey was available in both Turkish and English with the

following parts: (i) 17 questions about the factors affecting software produc-

tivity elicited from the literature such as motivation, management quality (e.g.

process, development tools, programming languages), complexity issues (e.g.

task, process, product), work environment, re-usability, requirements stability,

team issues (e.g. size, organization, location); (ii) 12 questions about the social

productivity factors identified from the literature such as conflicts and repu-

tation of a team leader, social interaction, social life, information awareness,

team cohesion, fairness, frequent meetings, and social trust; (iii) 10 questions

about the factors of social capital surveyed in the literature such as neighbor-

hood connections, group characteristics (personality types), generalized norms,

togetherness, everyday sociability, volunteerism, and trust; (iv) 12 personality

type questions to determine the importance of factors affecting the personality

traits based on the personality type constructs, and (v) 6 other complementary

and control questions (see Appendix C for survey data).

122

www.manaraa.com

7.3 Data Analysis

To test our hypothetical model of productivity and to reveal the relationships

of the latent and observable factors that are selected from the literature, we

perform a structural model analysis by using the linear and continuous frame-

work of LISREL [311], which is one of the most popular computer tool for

SEM analysis. In order to build a measurement (factor analysis) model, we

attempt to measure the unobserved variables (i.e. latent constructs) by using

the relationships of each observed variable with a construct.

Of the initial cohort of 213 industrial participants who returned the question-

naire, 21 were excluded as their questionnaires had missing pairs. We ended up

with 192 appropriate observations (cases) 24% of which were female, and 76%

of which were male participants. Prior to data analysis, the Turkish translation

of the survey was checked for both consistency and the language by a number

of experts from industry and academia. Next, we analyzed the role distribution

of the sample from the company Simurg. Table 7.1 shows the initial results.

Role1 Number of Individuals Percentage (%) in Organization

IT Specialist 25 13
Project Manager 17 9

Software Architect 4 2
Software Developer 66 35

Team Leader 13 7
Software Tester 23 12

Software Specialist 29 15
System Analyst 10 5
System Engineer 5 2

Total 192 100
1See Figure 6.1 for a summary of roles in software development.

Table 7.1: Distribution of Roles of the Participants in Development Organization

To asses the internal consistency of the survey, we use Cronbach’s α, a fre-

quently used variable to measure the validity and reliability of responses col-

lected by psychometric instruments [312]. The values around .70 or higher

are reliable, where a high Cronbach’s α value signifies that there are highly

correlated variables that are found in the survey [313].

αCronbach =
N

N − 1

(
S2 −

∑
S2
i

S2

)
(7.1)

123

www.manaraa.com

where N is the number of items in the questionnaire, S2 is the variance of

total score for each participants,
∑
S2
i is the summation of variances for each

question. Depending upon what is evaluated, the number of respondents or the

number of questions is shown by j and the variance is calculated as follows:

S2 =
1

j − 1

(
j∑
i=1

(Xi − X̄)2

)
(7.2)

Table 7.2 below illustrates the Cronbach’s α values for our survey instrument.

Overall, it was apparent from our calculations that the responses to our survey

had a high Cronbach’s α value, .83, which means that the questionnaire is able

to measure the latent constructs. In addition, we checked the consistency of

each set of questions for the constructs of the survey. The important result to

emerge from these calculations was that our survey instrument had an adequate

consistency according to Cronbach’s α values calculated for each of the selected

constructs (see Appendix D for a sample calculation).

Survey Constructs (Overall Cronbach’s α = .83)
Productivity Social Productivity Social Capital

Cronbach’s α values .68 .73 .76

Table 7.2: Individual Sections of the Questionnaire with respect to Reliability Coeffi-
cients

Table 7.3 presents responses for all identified factors, their descriptions, stan-

dard deviations, and the variances as descriptive statistics calculated for each

factor that potentially affects the productivity of software development.

In response to the survey instrument, most of the questions indicated that

nearly all the factors proposed to affect software development productivity mea-

sures had a rating higher than 3, which was considered as the middle point in

a 5-point Likert scale. This ensures our survey questions are relevant to partic-

ipants.

After the survey was closed, we conducted a series of interviews to understand

the problematic items in the questionnaire. The question, teams in different

locations, was not interpreted properly. Later we found that the term location

was understood differently, e.g. in the same office or otherwise in the same

124

www.manaraa.com

Factor ID Descriptions Mean s.d. Variance
X1 Level of individuals motivation 4.72 0.49 0.24
X2 Level of interests of individuals for their assigned tasks 4.56 0.66 0.44
X3 Development process or methodology 3.94 0.77 0.59
X4 Programming language 3.77 0.90 0.81
X5 The tools and technologies used 4.29 0.67 0.45
X6 Complex and challenging tasks 3.97 0.95 0.89
X7 Large and complex structured projects 3.37 0.89 0.80
X8 Tasks and their complex connections 3.80 0.74 0.55
X9 The work environment 4.17 0.74 0.55
X10 Using an off-the-shelf product 3.80 0.97 0.93
X11 The ability of an organization to stabilize requirements 4.22 0.78 0.61
X12 The changes in requirements of a project 3.68 1.04 1.09
X13 The team size 3.64 1.02 1.05
X14 Verbal communication of team members 4.39 0.70 0.49
X15 Non-verbal communications 3.03 1.10 1.22
X16 Teams in different locations 2.33 1.10 1.21
X17 Internal problem solving skills of a team 4.19 0.76 0.58
X20 Team Leaders conflict resolution skills 3.74 0.91 0.82
X21 Team leaders general skills 4.42 0.59 0.35
X22 Communication with all team members 4.30 0.80 0.64
X23 Social life out of the work place 3.65 0.89 0.79
X24 Knowing the tasks of others 4.22 0.85 0.73
X25 Collective team memory 4.07 0.61 0.37
X26 The unity in the service of team goals 4.16 0.69 0.47
X27 Enjoying teammates company 3.81 1.04 1.09
X28 Working less than the others 3.50 1.17 1.36
X29 Fair allocation of work 4.08 0.73 0.54
X30 Frequent Meetings 3.96 0.95 0.90
X31 Social trust 4.29 0.67 0.45
X32 Social connections 3.64 0.97 0.93
X33 Efficient usage of the social connections 3.68 0.95 0.90
X34 Social connections and career success 3.39 1.00 0.99
X35 Variation of personalities 3.42 0.96 0.92
X36 Generalized norms 3.21 0.92 0.85
X37 Togetherness 2.21 1.05 1.10
X38 Everyday sociability 3.27 1.13 1.27
X39 Extra potion of work for more social connections 3.14 1.03 1.05
X40 Volunteerism 3.66 0.88 0.78
X41 Trust 3.84 0.81 0.66

Table 7.3: Means, Variances and Standard Deviations of the Factors of Productivity

country, etc. Similarly, our interviews revealed that non-verbal communication

might also not interpreted as expected because it had different meanings for

the participants. In general, therefore, the two problematic items were found

and excluded from all models.

125

www.manaraa.com

7.4 Confirmatory Factor Analysis and Construct Validity

The content of this section is concerned with estimating the relationships in the

surveyed productivity factors with respect to each other. Structural modeling

is therefore used for linking a theoretical perspective (i.e. proposed model) with

the observed data. We formed several SEM models; first we built models based

on all parameters mentioned in the survey data for productivity, social produc-

tivity and social capital. Secondly, we estimated the common factors and built

a set of models to investigate the correlations between observed variables in spe-

cific cases. Finally, we built models to relate the constructs, productivity, social

productivity, and social capital. To assess these constructs, we systematically

conducted our analysis in three main steps: (i) testing the measurement model,

(ii) testing the structural model, and finally (iii) comparing the model with the

alternative models. The procedure, called the maximum likelihood estimation,

was used to approximate the parameters of models with their loadings, i.e. the

variables were hypothesized to be related with each other.2

7.5 Models with One Latent Construct

In this section, we hypothesized six models with one latent variable to test

the validities of factors for latent constructs that are identified as productiv-

ity, social productivity, and social capital: The first one was designed (see 7.2)

to analyze the factors of productivity. It employs all 17 observed variables

identified from the literature, X1 through X17 (see Table 7.3). Structural cor-

relations were statistically significant except for variables X15 and X16, namely

the factors for the teams in different locations, one of which had a negative load-

ing score and non-verbal communications was below the threshold (less than

.20) [314], which is an indication of a comprehensibility problem particularly

for these two questions.

We ran the analysis; good fit values were obtained where the indicators var-

ied between .60 and .25 (see Figure 7.2). A null hypothesis (i.e. latent con-

2LISREL incorporates maximum likelihood estimation as the default procedure.

126

www.manaraa.com

ProductivityX14

X2

X13

X12

X9

X1

X3

X5

X7

X4

X10X11

X8

X6

X17

.48
.40

.37

.56

.60

.25

.38

.35.50.25
.39

.28

.38

.37

.33

.77 .84

.86

.69

.64

.94

.85

.88
.75

.94.85

.93

.86

.89

.86

Figure 7.2: Model I with Loadings with Fifteen Factors of Productivity of Software
Development

struct and variables are uncorrelated) was rejectable where χ2(136, N = 192) =

684.053, p < .001. In addition, there was a good-enough fit between the

model and the data χ2(119, N = 192) = 206.714, p < .001, where RMSEA =

.0621, GFI = .887, AGFI = .855, CFI = .823, NNFI = .798). A χ2 differ-

ence test indicated that there was, however, a significant improvement between

the independence model and the hypothesized model such that ∆χ2(17, N =

192) = 477.339, p < .001).

In model II, we hypothesized that seven factors or variables that covary together

are (i) level of individuals motivation, (ii) the tools and technologies used, (iii)

tasks and their complex connections, (iv) the work environment, (v) use of

off-the-shelf products, (vi) requirements stability (vii) problem solving skills of

a team, shown by X1, X5, X8, X9, X10, X11, X17, respectively, as the model

parameters (see Figure 7.3, model II).

127

www.manaraa.com

Productivity

X5X1

X8

X10

X17

X9

X11

.54
.49

.27

.62

.22

.43

.47

.71 .76

.93

.62

.95

.81

.78

Figure 7.3: Model II with Loadings with Company Selected Seven Factors of Produc-
tivity of Software Development

Model II built for productivity has structural correlations that were statistically

significant for all variables (p < .05). All factor loadings are above the threshold

of .20 that ranged between .22 and .62. A null hypothesis was rejectable where

χ2 for independence model with 21 the degrees of freedom is 188.95. The

model showed a moderate fit3 with data, where χ2(14, N = 192) = 38.110, (p <

.001), RMSEA = .095, GFI = .89, AGFI = .90, CFI = .85, NNFI = .78). A

χ2 difference test indicated that there was a noticeable improvement between

the independence model and the hypothesized model as ∆χ2(7, N = 192) =

150.84, (p < .001).

7.5.1 Models for Social Productivity

To investigate the relationship between the latent construct of social produc-

tivity and potential factors affecting it, we built multiple models with the sur-

veyed factors affecting the social productivity construct. Consequently, the first

model was based on the six factors, namely (i) team leaders’ skills, (ii) com-

munication among team members, (ii) social life (out of the work place), (iv)

knowing the tasks of others, (v) fair allocation of work (vi) frequent meetings,

(X21, X22, X23, X24, X29, X30, respectively) (see Figure 7.4).

3A moderate fit: “ There are some differences between the model and the data but there
are also some great similarities” [315]

128

www.manaraa.com

Social
Productivity

X22X21

X23

X29

X24

X30

.45
.61

.42

.56

.50

.37

.80 .63

.83

.69

.75

.87

Figure 7.4: Model III with Loadings for Six Factors of Social Productivity for Software
Development

The Model IV had eight hypothesized variables to define social productivity

namely: (i) team leaders’ skills, (ii) communication between the team mem-

bers, (ii) social life out of the work place, (iv) knowing the tasks of others,

(v) the unity in the service of team goals, (vi) fair allocation of work (vii)

frequent meetings (ix) social trust, (X21, X22, X23, X24, X26, X29, X30, X31,

respectively) (see Figure 7.5).

Social
Productivity

X22X21

X23

X26

X31

X24

X29

.30
.47

.36

.44

.43

.34

.38

.30 .43

.61

.50

.28

.44

.31

.47

X30 .60

Figure 7.5: Model IV with Loadings for Eight Company Selected Factors of Social
Productivity for Software Development

Both proposed social productivity models had structural correlations that were

statistically significant (p < .05). For the third model (Figure 7.4), inde-

pendence model was rejected; χ2 for independence model with 21 Degrees

129

www.manaraa.com

of Freedom is 174.242. All factor loadings are above the threshold of .20

where they ranged between .37 and .61. The proposed model showed a rea-

sonable fit to the data, where χ2(14, N = 192) = 23.792, p < .001, and

RMSEA = .0622, GFI = .964, AGFI = .93, CFI = .934, NNFI = .901.

The difference test for χ2 indicated that there was an improvement between

null model and hypothesized one (∆χ2(7, N = 192) = 150.45, p < .001).

For the fourth model (Figure 7.5), the independence model with 28 degrees

of freedom was 401.815, where the proposed model showed evidence of hav-

ing a very good fit with the data, χ2(20, N = 192) = 22.933, p < .001, and

RMSEA = .0285, GFI = .969, AGFI = .945, CFI = .990, NNFI = .986. All

factor loadings were above the threshold of .20 where they ranged between .30

and .47. The difference test for χ2 signified that there was an improvement in

between null and the hypothesized model, (∆χ2(8, N = 192) = 378.882, p <

.001).

7.5.2 Models for Social Capital

To investigate the relationship between the latent construct of social capital and

potential factors affecting it, firstly, we built Model V as a social capital model

(Figure 7.6) with seven observed variables by using the social capital model

derived from work of Narayan and Cassidy [194], with the factors; (i) efficient

usage of the social connections, (ii) social connections and career success, (iii)

generalized norms, (iv) togetherness, (v) everyday sociability, (vi) volunteerism,

(v) trust, (X33, X34, X36, X37, X38, X40, X41, respectively).

The first social capital model (Figure 7.6) had structural correlations that were

statistically significant. All factor loadings were above the threshold of .20

where they ranged between .34 and .77. A null hypothesis was rejectable where

χ2 for independence model with 21 Degrees of Freedom was 274.796. The model

showed a moderate fit with data, where χ2(14, N = 192) = 34.703, p < .001, and

RMSEA = .088, GFI = .951, AGFI = .901, CFI = .913, NNFI = .869). A

χ2 difference test indicated that there was a significant advancement between

the independence model and the hypothesized model as ∆χ2(7, N = 192) =

130

www.manaraa.com

Social
Capital

X34X33

X36

X38

X37

X40

.56
.77

.57

.36

.34

.34

.46

.68 .41

.68

.87

.88

.88

X41
.79

Figure 7.6: Model V with Loadings with Seven Factors of Social Capital in a Software
Development Organization

240.093, (p < .001).

To investigate more about the social capital construct, we formed an alterna-

tive social capital model (Figure 7.7) based on the interviews conducted within

the company with seven company selected factors; (i) social connections, (ii)

efficient usage of the social connections, (iii) social connections and career suc-

cess, (iv) generalized norms, (v) togetherness, (vi) everyday sociability, (vii)

volunteerism, (X32, X33, X34, X36, X37, X38, X40, respectively).

Social
Capital

X33X32

X34

X37

X36

X38

.68
.58

.83

.52

.33

.32
.31

.53 .66

.31

.36

.89

.90

X40
.90

Figure 7.7: Model VI Loadings with six factors of Social Capital based on Company
Selected Parameters

The second social capital model (Figure 7.7) had structural correlations that

were statistically significant. All factor loadings were above the threshold of .20

131

www.manaraa.com

where they ranged between .31 and .83. A null hypothesis was rejectable where

χ2 for independence model with 21 Degrees of Freedom is 334.324. The model

showed a good fit with data, where χ2(14, N = 192) = 21.311, p < .009, and

RMSEA = .0523, GFI = .969, AGFI = .938, CFI = .973, NNFI = .960). A

χ2 difference test indicated that there was a significant advancement between

the independence model and the hypothesized model as ∆χ7(7, N = 192) =

313.013, (p < .001).

7.6 Models with Two Latent Constructs

In this part of our analysis, we built a series of models to investigate the cor-

relation between productivity and social productivity, and social capital and

social productivity, all of which were based on the indicators that were poten-

tially affecting these latent constructs. To preserve the reliability of our SEM

models, we used a limited set of indicators. These indicators, however, were

previously discussed with the management team of Simurg, which was found

important due to their past experiences. We used the data to test both the

measurement and structural models.

Model VII (Figure 7.8) shows the relationship between productivity and social

productivity with a set of factor loadings that were statistically significant. The

factor loadings were between .21 and .69. The independence model, which tests

the null hypothesis where all variables uncorrelated was clearly rejectable. The

χ2 for independence model with 66 degrees of freedom was 505.161. The pro-

posed model yielded a good-fit, where χ2(53, N = 192) = 88.125, p < .001, and

RMSEA = .0589, GFI = .929, AGFI = .895, CFI = .914, NNFI = .893).

The significant improvement fit between the hypothesized and interdependence

model was found by using a χ2 difference test, ∆χ2(13, N = 192) = 417.036, p <

.001).

132

www.manaraa.com

Productivity

Social
Productivity

X1 X5 X8
X9

X10

X12

X17

X21

X23

X25 X26

X29

.75

.55

.51 .29 .61

.21

.27

.44

.47

.28

.69 .67
.30

.77

.92

.52

.56

.91

.70 .74 .92 .62

.96

.93

.81

Figure 7.8: Model VII for Productivity and Social Productivity in a Software Devel-
opment Organization

The most striking observation to emerge from the data comparison for the pro-

ductivity construct was the work environment (Standardized Path Coefficient=

.61). The motivation (Standardized Path Coefficient= .55) was the second sig-

nificant predictor of productivity. For the social productivity construct, the

collective team memory (Standardized Path Coefficient= .69), and unity of a

team in the service of team goals (Standardized Path Coefficient= .67) were

the two significant predictors. In addition, we observed high structural cor-

relations between the latent variables (productivity and social productivity)

(.75, p < .05).

Model VIII has two latent variables, i.e. social productivity and social cap-

ital (Figure 7.9). The indicators were selected by the management team of

the software company where all factor loadings yielded statistically significant

values (p < .05). The null hypothesis is not acceptable. The χ2 for indepen-

dence model with 36 Degrees of Freedom was 332.483. The significant improve-

ment fit between the hypothesized and interdependence model was found by

133

www.manaraa.com

Social
Capital

X21 X23 X25
X26

X29

X33

X34

X36

X37

.37

.41

.29 .73 .68

.26

.60

.79

.57
.33

Social
Productivity

.83 .91 .47 .54

.93

.64

.38

.68

.89

Figure 7.9: Model VIII for Social Productivity and Social Capital in a Software De-
velopment Organization

using a χ2 difference test, ∆χ2(10, N = 192) = 278.805, p < .001). The pro-

posed model yielded a good-fit, where χ2(26, N = 192) = 53.678, p < .001, and

RMSEA = .074, GFI = .941, AGFI = .898, CFI = .903, NNFI = .87).

From the data in Figure 7.9, it was apparent that for construct of the social

productivity, predictors namely collective team memory (Standardized Path Co-

efficient= .73), and unity of a team in the service of team goals (Standardized

Path Coefficient= .68) relatively got higher values. For the social capital con-

struct, the less surprising predictors were the two indicators titled as efficient

usage of the social connections (Standardized Path Coefficient= .60), and social

connections for career success (Standardized Path Coefficient= .79). Moreover,

correlation between social productivity and social capital was found with a

statistically significant value of (.37, p < .05).

134

www.manaraa.com

7.7 Refined Structural Equation Models

In the next part of our analysis, we combined related survey questions into

categories by arranging them regarding their commonalities to reflect broader

themes. Therefore, we formed new predictors that are summarized in Table 7.4.

We calculated the average scores for these new themes in an attempt to im-

prove our accuracy in measuring the latent constructs. For example, the average

scores were calculated for factors of productivity related to team issues X13,

X14, X17, all of which were combined to form a new category Y 7. Concur-

rently, complexity issues were formed by the average scores from the factors

classified as X6 through X8 to form Y 3.

Table 7.4 presents all factors that were transformed to Y with calculated means,

variances, and standard deviations as descriptive statistics. Once again, we

calculated the reliability coefficients called the Cronbach’s α for updated survey.

It was found as .8, which confirmed that data was suitable for building models.

Factor ID Factor Name New Factor ID mean s.d. var.

X1 - X2 Motivation Y1 4.64 0.48 0.23
X3 - X4 - X5 Management Quality Y2 4.00 0.59 0.35
X6 - X7- X8 Complexity Issues Y3 3.71 0.61 0.37

X9 Work Environment Y4 4.17 0.74 0.55
X10 Re-usability Y5 3.80 0.97 0.93

X11 - X12 Requirements Stability Y6 3.95 0.67 0.45
X13 - X14 - X17 Team Issues Y7 3.52 0.48 0.23

X20 - X21 Team Leader Y8 4.08 0.62 0.38
X22 - X23 Social Interaction and com. Y9 3.98 0.67 0.45
X24 - X25 Information Awareness Y10 4.14 0.60 0.36
X26 - X27 Team Cohesion Y11 3.98 0.69 0.48
X28 - X29 Fairness Y12 3.79 0.71 0.51

X30 Frequent Meetings Y13 3.96 0.95 0.90
X31 Social Trust Y14 4.29 0.67 0.45

X32 - X33 Neighborhood Connections Y15 3.66 0.81 0.65
X34 - X35 Group Characteristics Y16 3.40 0.80 0.65

X36 Generalized Norms Y17 3.21 0.92 0.85
X37 Togetherness Y18 2.21 1.05 1.10
X38 Everyday sociability Y19 3.27 1.13 1.27

X39 - X40 Volunteerism Y20 3.40 0.85 0.72
X41 Experience and Trust Y21 3.84 0.81 0.66

Table 7.4: Means, Variances and Standard Deviations of the Combined Factors

In all three models below, we had seven factors to identify our three constructs,

hypothesized to covary with each other. Model IX (Figure 7.10) displays the

relationship between productivity and social productivity by using a set of

135

www.manaraa.com

Productivity

Social
Productivity

X8

.71

.46

.54
.58
.40

.47

.32

.42

.53

.39

.68

.49

.45

.72

.53

.84

.76

.80

.67

.84

.70

.70

.78

.90

.83

.65

.54

.59

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

Y13

Y14

.79

Figure 7.10: Model IX for Productivity and Social Productivity in a Software Devel-
opment Organization

factor loadings that were statistically significant. The factor loadings were

ranged between .32 and .68. The independence model was clearly rejectable.

The χ2 for independence model with 91 degrees of freedom was 858.748. The

proposed model yielded a good-fit, where χ2(76, N = 192) = 119.360, p <

.001, and RMSEA = .0547, GFI = .92, AGFI = .89, CFI = .94, NNFI =

.925). To asses the improvement between the hypothesized model with the

interdependence model a χ2 difference test was conducted, ∆χ2(15, N = 192) =

739.388, p < .001).

Empirical findings suggest that productivity was mostly defined by the factor

called management quality (Standardized Path Coefficient= .58) and secondly

by the factor called motivation (Standardized Path Coefficient= .54). From

the social productivity viewpoint, the most significant factor was information

awareness (Standardized Path Coefficient= .68) and the second important in-

dicator was social trust (Standardized Path Coefficient= .59). The correlation

between productivity and social productivity was .71.

136

www.manaraa.com

Social
Productivity

X8

.56

.59

.39
.52
.62

.56

.38

.62

.38

.35

.53

.73

.67

.86

.71

.88

.47

.55

.73

.62

.83

.85

.68

.85

.62

.71

.42

.54

Y8

Y9

Y10

Y11

Y12

Y13

Y14

Y15

Y16

Y17

Y18

Y19

Y20

Y21

.66

Social
Capital

Figure 7.11: Model X for Social Productivity and Social Capital in a Software Devel-
opment Organization

The model (Figure 7.11) depicts the relationship between social productivity

and social capital by using a set of (statistically significant) factor loadings that

ranged between .35 and .73. The null model was clearly rejectable. The χ2 for

independence model with 91 degrees of freedom was 967.046. The proposed

model yielded a reasonable fit, where χ2(76, N = 192) = 130.088, p < .001, and

RMSEA = .0610, GFI = .911, AGFI = .88, CFI = .931, NNFI = .918). To

asses the improvement between hypothesized model and the interdependence

model, a χ2 difference test was conducted, ∆χ2(15, N = 192) = 836.958, p <

.001).

These results suggest that information awareness (Standardized Path Coeffi-

cient= .62), and social trust (Standardized Path Coefficient= .62) were the most

important two factors of social productivity whereas neighborhood connections

(Standardized Path Coefficient= .67), and group characteristics (Standardized

Path Coefficient= .73) were the factors affecting social capital construct. Fur-

137

www.manaraa.com

thermore, there was a significant correlation between social productivity and

social capital, which was measured as .56.

7.8 The Tripartite SEM Model

Finally, we constructed a tripartite unified SEM model as Model XI (Fig-

ure 7.12) to investigate the relationships between productivity, social productiv-

ity, and social capital, and to show the factors affecting these latent constructs.

To measure the hypothesized influence between the observed and latent vari-

ables, we built a model with three constructs, all of which were found statisti-

cally significant (p < .05) and ranged between .30 and .73. The independence

model was clearly rejectable where the χ2 for independence model with 210

degrees of freedom is 1680.137. The proposed model yielded a good-fit, where

χ2(186, N = 192) = 296.896, p < .001, and the fit indices for the tripartite

model were RMSEA = .0559, GFI = .90, AGFI = .84, CFI = .914, NNFI =

.90). Furthermore, a χ2 difference test was conducted, ∆χ2(24, N = 192) =

1383.241, p < .001). Management quality (Standardized Path Coefficient= .59)

was a significant predictor for productivity, which was followed by motivation

(Standardized Path Coefficient= .53) and work environment (Standardized Path

Coefficient= .47).

The most significant predictor for social productivity was found to be infor-

mation awareness (Standardized Path Coefficient= .65), which was followed by

the predictors of social trust (Standardized Path Coefficient= .60), and fair-

ness (Standardized Path Coefficient= .56). The most significant predictor for

social capital was group characteristics (Standardized Path Coefficient= .73),

which was followed by neighborhood connections (Standardized Path Coeffi-

cient= .68). In addition, all of the structural correlations among the latent

variables were statistically significant. The correlation between productivity

and social productivity was .70; social productivity and social capital was .55,

and productivity and social capital was .48.

Table 7.5 provides a summary of the important values of all the models used in

the analysis.

138

www.manaraa.com

Productivity

Social
Productivity

X8

.43

.30

.59
.53

.42

.47

.45

.43

.40
.56

.55

.65

.51

.70

.58

.84

.74

.82

.65

.83

.69

.72

.78

.91

.80

.64

.60

.68

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

Y13

Y14

.81

Social
Productivity

Social
Capital

Y15

Y16

Y17

Y18

Y19

Y20

Y21

.37

.35

.42

.53

.54

.73

.54

.47

.72

.86

.88

.83

71

.70

.55

.48

Figure 7.12: Model XI for Productivity, Social Productivity and Social Capital in a
Software Development Organization

Model ID χ2/df RMSEA GFI AGFI CFI NNFI Acceptance

I 1.74 .0621 .887 .855 .823 .798 Yes
II 2.72 .0951 .89 .90 .85 .78 No
III 1.70 .0622 .964 .93 .934 .901 Yes
IV3 1.15 .0285 .969 .945 .99 .986 Yes
V 2.48 .0882 .951 .901 .913 .869 No
VI 1.52 .0523 .969 .938 .973 .96 Yes
VII 1.66 .0589 .929 .895 .914 .893 Yes
VIII 2.06 .074 .941 .898 .903 .87 Yes
IX 1.57 .0547 .92 .89 .94 .925 Yes
X 1.71 .061 .911 .88 .931 .918 Yes
XI 1.59 .0559 .90 .84 .914 .90 Yes

1,2Model was rejected because of its RMSEA value.
3 Model was the most parsimonious of all the models tested.

Table 7.5: Goodness-of-Fit indexes for all Constructed Structural Equation Models
(refer to Table 3.5 for cut-offs)

139

www.manaraa.com

7.9 The Impact of Teams and Roles to Productivity, Social Produc-

tivity, and Social Capital

In this part of the analysis, we categorized the latent constructs with respect

to the identified roles in Simurg. For each role identified by our survey, we

calculated means, variances, and standard deviations, that is descriptive statis-

tics, presented in the Table 7.6. To test the homogeneity of the data, here we

calculated three coefficients of variation (CV), which is the percentage ratio (a

comparison) of standard deviation to mean (see Equation 7.3). The data is

called homogeneous when CV is below 33%, while values above cut-off value

signify that there are outliers or some unwanted measurement errors that can

affect the outputs. Since our coefficients fell within the threshold value, we

confirmed that the data was homogeneous.

CV =
s

X̄
(100) (7.3)

Roles Productivity Social Productivity Social Capital

IT Specialist 3.82 4.00 3.40
Project manager 3.85 4.01 3.23
Software architect 3.93 4.10 2.85
Software developer 3.88 3.97 3.29
Team Leader 3.89 4.04 3.26
Software Tester 3.96 4.29 3.60
Software specialist 3.96 4.00 3.39
System Analyst 3.70 3.82 3.20
System Engineer 3.64 3.82 3.70

Mean(X̄) 3.85 4.01 3.32
Standard deviation(s) 0.11 0.14 0.25
Coefficient of variation (%) 2.92 3.58 7.40

Table 7.6: Roles versus the Means, Standard Deviations, and Coefficient of Variation
for the Social Constructs

To investigate the difference between the ideal and the actual team size for

Simurg, we asked two questions in our survey (see Appendix A). Question 18;

How many members are in your immediate development team (TEAMSIZE),

and Question 19; In your view, how many of your team members are operating

at high levels of productivity, (IDEAL TEAM SIZE). Using this information,

we derived three variables namely, EXCESS TEAM SIZE, which was identi-

140

www.manaraa.com

fied by actual team size minus ideal team size. WHETHER IDEAL TEAM ,

a boolean variable, which can be true or false (zero or one), and finally a vari-

able called UNDER IDEAL OV ER. In addition, we asked the participants

about their years at the industry (WYEAR), and the years they spend in

this company (WTHISFIRM). The descriptive statistics with the averages

of constructs defined for the team-based variables with respect to the role of

individuals were presented at Table 7.7.

Roles WYEAR WTHISFIRM TEAMSIZE IDEAL
TEAMSIZE

EXCESS
TEAMSIZE

IT Specialist 7.14 1.52 5.36 3.84 1.52
Project Manager 12.18 3.06 5.94 3.71 2.24
Software Architect 17.25 4.50 10.00 6.00 4.00
Software developer 5.67 3.14 7.44 4.80 2.64
Team Leader 10.77 2.85 8.38 4.85 3.54
Software Tester 3.85 2.00 7.30 5.04 2.26
Software Specialist 1.88 1.41 8.28 7.24 1.03
System Analyst 8.20 4.40 14.80 9.10 5.70
System Engineer 13.40 2.20 8.40 5.40 3.00
Mean 8.93 2.79 8.43 5.55 2.88
Standard deviation 4.91 1.13 2.76 1.71 1.40

Table 7.7: Mean Scores of Roles versus Team Constructs

This table is highly revealing in several ways. Firstly, it shows the average of

years of experience both in this organization and outside, and as a whole, differ-

ent roles identified by the survey. Secondly, it is apparent from this table that

software architects have the highest experience average, and system analysts

work in the biggest teams. By comparing with other roles, software specialists

and IT specialists on the other hand think that they are working close to the

ideal team size. From this data, we can see that the lowest value for years of

experience both in this firm and in general are found as software specialists.

Furthermore, the results indicate that, of the 192 participants who completed

this part of the questionnaire (see Appendix C), 80 participants (22 female,

58 male) thought that they were in a team that is in the ideal size, while 112

participants (25 female, 87 male) believe that their actual team is not at the

ideal size. The role of participant with respect to their belief in under, ideal,

and over-sized teams are shown in the Table 7.8.

141

www.manaraa.com

Role Under-sized Ideal Team size Over-sized

IT Specialist 0 13 12
Project Manager 0 5 12
Software Architect 0 1 3
Software developer 2 21 43
Team Leader 0 5 8
Software Tester 1 10 12
Software Specialist 0 19 10
System Analyst 0 4 6
System Engineer 0 2 3

Total Personnel 3 (%.02) 80 (%.42.98) 109 (%57)

Table 7.8: Roles versus Participants Thoughts on Team Size

From the data in Table 7.8, it is apparent that 57.02% of survey participants

thought that their team was not in ideal size. What is interesting in this data

was that many of the software developers think that they were in an over sized

team. However, there were only two software developers and one software tester

who thought that they might need additional members to their teams to reach

the ideal team size.

Turning now to the experimental evidence based on our survey, we seek the de-

gree of casual (strength of) relationships between different variable pairs. One

way to investigate the linear relationships between a pair of variables is to con-

struct a correlation structure. To understand how the data trends together, the

relationship can be quantified by a coefficient called correlation coefficient. It is

a coefficient that measures how strongly the variables are connected, and what

values they take between −1.0 and +1.0. The minus sign shows the changes

in the negative direction (i.e. inverse relationship), so when the correlation is

+1.0, it is called a perfect positive correlation. Using a set of n observation of

a pair of variables, (X1, Y1), (X2, Y2), ...(Xn, Yn), the correlation coefficient for

this part of the study was calculated by following equation 7.4.

r =

n∑
i=1

(Xi − X̄)(Yi − Ȳ)√
n∑
i=1

(Xi − X̄)2

√
n∑
i=1

(Yi − Ȳ)2

(7.4)

To calculate the significance of correlation (r), a T-test can be performed, and

142

www.manaraa.com

calculated by equation 7.5. The test comprise of a comparison of a cataloged t

value with respect to an empirical one.

|t| =
∣∣∣∣ r√

1− r2
×
√
n− 2

∣∣∣∣ (7.5)

where n is the number of roles, and r is the correlations (n=9 in our case),

n-2 is the number of degrees of freedom. Table 7.9 provides the significant

correlations and values of T-tests, which were used to analyze the relationship

between pairs of variables.

Variable Pairs r t1

WTHISFIRM - TEAMSIZE .68 2.45
WTHISFIRM - Social Capital -.76 -3.05
WTHISFIRM - EXCESS TEAM SIZE .86 4.49
IDEAL TEAMSIZE - TEAMSIZE .91 5.75
TEAMSIZE - EXCESS TEAM SIZE .86 4.48

1tcritical (df=7, 0,05)=2,3651, p < .05

Table 7.9: Statistically Significant Pairwise Correlations for Roles from the Survey

Table 7.9 illustrates that the years participants spent at the company and the

team size had a positive correlation, .68, and the correlation between the years

they spent at the company and excess team size was .86, whereas a strong

negative correlation, −.76, was observed between the years participants spent

at the company and the value that participants gave to social capital. We

confirm that the longer period participants worked in the company, the bigger

teams they started to work with where they tended to think that their team

was too large to obtain higher productivity.

Interestingly, participants who spent more time with Simurg were inclined to

give less importance to social capital (see Table 7.9). Furthermore, the cor-

relation between team size-ideal team size was positive and higher than the

correlation between team size-excess team size. We conclude that for those

participants who work in a larger team size, their ideal team size gets higher,

and they also tend to think that their team size was not ideal for software

development productivity.

Recently, there have been several empirical investigations into the effects of team

143

www.manaraa.com

size on software development productivity [316]. However, since Brooks [317]

initiated a discussion about the possible effects of team size on the productivity

of software development, team size has become a central issue for empirical re-

search in software engineering. From a socio-technical perspective, the System

Dynamics model was developed to investigate the human capabilities such as

planning a set of possible staffing procedures on a variety of project costs with

different schedules [318]. In addition, studies of software development produc-

tivity showed the importance of the average team size [241]. Most importantly,

the findings of the current study were consistent with those of Putman [319],

who found evidence that the productivity of software development was found

higher for smaller software teams. Recent evidence from a number of manage-

ment studies suggests that small teams are performing better [320]. In par-

ticular, a study indicated that size of the most effective software teams varies

between 3 to 6 members [321]. Taken together, our findings further support the

recent investigations in team size for software development projects.

7.10 Case Study I: Threats to Validity

Here, we consider several potential threats that were addressed for the validity

of case study I. To deal with construct validity issues, first we conducted a

number of literature reviews to build our theoretical model; secondly we asked

a group of experts from both academia and industry to assess our initial con-

structs and the potential factors that are the representatives of the constructs

being measured. It was suggested to conduct an initial implementation in an

industrial focus group in order to check the validity of our research questions

and conduct a test study with our preliminary ideas. Then, we published the

initial results of a pilot study and got some early feedback before conducting the

industrial case study. In brief, our initial research questions were taken from a

purely theoretical perspective and aligned with practical industrial viewpoint.

In addition, we revised our survey questions based on the initial comments

from experts to increase the clarity of items. After conducting the survey, for

the first part of the study, we used Cronbach’s α to test the reliability of our

144

www.manaraa.com

identified constructs. For the second part, we checked the data homogeneity

by using the coefficients of variation. In accordance with these, we believe that

both latent and observed variables, and pairwise correlations in this study have

been measured properly.

To cope with internal validity problems, first we built a number of models based

on the selected constructs and tested them with a set of factors identified from

the literature and refined through focus groups. Secondly, we selected the most

convenient time for participants to start the survey (we had to wait for a while

to capture such a time frame), and limited the time for respondents to two weeks

time to avoid any history effect. Thirdly, the measures taken through the survey

were collected consistently (i.e. without changing the dependent variables in

the survey instrument) so as to deal with any instrumentation effect. Fourthly,

participants could give biased responses, as they may not behave rationally,

therefore, once again, we checked the internal reliability and validity of each

question using the Cronbach’s α calculations.

To manage external validity problems, we iteratively built a number of SEM

models similar to a conceptual replication tests (i.e. an alternative perspec-

tive that test the same concept in different ways) [121]; we tested our three

constructs with different factors and investigated their correlations by build-

ing different combinations. As a part of case study I, we conducted validation

interviews in which the measured factors were reviewed by a group of experts

who had already contributed to the several aspects of the study; (i) to check

the validity of the identified factors and their importance, (ii) to check whether

the findings are generalizable. Finally for the reliability aspect, we clarified the

data collection method and documented the processes and the protocols that

were developed.

145

www.manaraa.com

7.11 Chapter Summary

This chapter detailed the data analysis of Case Study I. The theoretical models

of productivity, social productivity, and social capital of software development

are derived from literature and presented in Chapter 5. They were empirically

investigated using techniques such as structural equation modeling, and corre-

lation analysis. In the last part of this chapter, the impact of teams and roles

were investigated with respect to the productivity, social productivity, and so-

cial capital of software development organizations. Overall, we confirmed that

there is a significant correlation between measured social productivity and the

productivity of software development organization. Furthermore, our empiri-

cal results indicated a strong negative association between the value of social

capital and the time individuals had spent with the software development com-

pany. Overall, these findings suggest an important role of the social aspects of

software development in software development productivity. The next chapter

will discuss the results from Case Study II.

146

www.manaraa.com

Chapter 8

Empirical Findings: Case Study II

Grounded
Theory

Case
Study II

Game
Playing

Structural
Equation
Modelling

Case Study ISurvey Research

Industr ial Implementat ion

Research Requirements

Empirical Evaluation

Figure 8.1: A part of the conceptual overview of the research

8.1 Introduction

This chapter presents the major empirical findings of the second case study that

demonstrates an approach, which has the potential to help software develop-

ment managers to relate personality types of practitioners with team structures

for better team configurations. To this end, we develop a card game for measur-

147

www.manaraa.com

ing personality traits compatible with the MBTI1, which is the most frequently

used tool in the industry for profiling software development personnel [280].

Furthermore, we demonstrate a technique to visualize effective team structures

using social characteristics of their personnel for exploring team compatibility.

Similar to the psychological evaluation tests our technique is based on situa-

tional context cards that are accompanied by MBTI-like questions, which are

derived from several situations captured from the events observed in the soft-

ware industry. Grounded on software development concepts, these context cards

are used to create a game-based approach where the goal of the game is to re-

veal personality types of software practitioners. The method for the creation

of situational context cards, rules and the structure of a game are detailed in

this chapter. After validating the instrument, an industrial implementation

is conducted and lastly results found by the case study are illustrated as an

MBTI-Team radar (i.e. a spiderweb chart) using five software development

teams from Simurg.

8.2 Crafting the Instrument and Protocols

This part of the study is comprised of several sequential steps, which requires a

significant amount of time on part of participants. Therefore, the initial process

of card creation was simultaneously conducted both at a university environment

and in an industrial setting.

Furthermore, we intentionally used Keirsey’s temperament sorter template as

a reference framework for our assessment for two reasons. First, it is the only

version of the MBTI test on the market freely available (via Keirsey’s book).

We thought using a common template would be helpful for evaluators to work

on our cards. Secondly, we preferred to be compatible with MBTI tests for the

outputs of this study. Our approach comprises three main steps: (i) initiation

phase, (ii) card creation phase, (iii) comparison phase (see Figure 8.2).

1Personality research literature in software engineering are reviewed in Chapter 6.

148

www.manaraa.com

Figure 8.2: The Systematic Process for Creating Context Cards

8.2.1 Initiation phase

The initiation phase started with searching for a set of context dependent situa-

tions from the industrial settings that are transformable into hypothetical situ-

ation, which were later used in the card design process. To improve the findings

through peer confirmation, we reviewed the questions of Keirsey’s Sorter [281]

for potential themes to which our context dependent questions should be based

upon. To store the codings transcribed from the interviews, a codebook was

also created (see Figure 8.3).

8.2.1.1 Initial Interviews

By following Creswell’s advice [143], we selected 20 participants - who were

highly experienced in software development - for this part of the study (10

were selected for semi-structured interviews, and 10 were selected for the ex-

149

www.manaraa.com

pert reviews). From among the initial cohort of 60 software practitioners who

are willing to participate in the study, we selected 10 individuals for the inter-

views based on their availability, work experience and age. All participants were

above 30 years of age, and they had at least five years of experience in software

development domain. Designated interviewees were informed about personality

type research in software engineering and requested to submit a conventional

MBTI based test by email. Next, they received a consent letter and a set of

interview questions such as “What do you think is missing in a personality test

like this for identifying software engineers personality types?”, “Can you think

of any domain specific situation that can replace a question from the question-

naire?”, etc. Later, follow-up discussions about the MBTI types were recorded

for transcription. During the process, the transcriptions were segmented based

on several coded parameters such as similarities and contradictions in speech,

and then they were processed before starting the analysis (see Appendix B for

sample coding).

Based on the preliminary outcomes, 5 people out of 10 interviewees were selected

for half an hour one-to-one interviews. For the next iteration, we selected 3

participants who were from the research and development department of the

company for a one hour extra discussion. Finally, we discussed the findings of

the previous iterations with the head of the human resources of Simurg.

Furthermore, additional data concerning to a number of business situations were

collected by one of the researchers who participated in a number of meetings

such as interviews and focus group studies.2

Participant ID Title Age Years of Experience Education
P12 IT Specialist 33 6 MSc.
P36 Project Manager 47 7 PhD.
P44 Software Architect 37 12 BSc.
P57 Software Developer 31 6 BSc.
P99 Software Developer 33 7 BSc.
P106 R&D Team Lead 39 14 PhD..
P112 Software Tester 32 4 MA.
P73 System Analysis 34 9 BA.
P51 R&D Team Member 32 7 MSc.
P97 R&D Team Member 31 5 MSc.

Table 8.1: Participants’ Information

2The interview data are kept confidential.

150

www.manaraa.com

Table 8.1 outlines the profile of the 10 participants including their roles (titles),

age, years of experience and level of education. The first iteration was conducted

on ten people. The interviews were analyzed from audio recordings by using

a tool for scientific transcription called f5. Additionally, we used the TAMS

analyzer as a Computer Assisted Qualitative Data AnalysiS (CAQDAS) tool

while processing our data.

8.2.1.2 Validation of the Codebook

To aid in coding the segments of information, we used a set of mnemonic codes

to designate the roles of software practitioners (e.g. SD, ST, etc.), which were

formed in Chapter 6. The goal was to create an index between roles, themes

and keywords, which might be beneficial for the categorization process. The

data segment, which had a potential keyword was given a new code and added

to a codebook. When the transcription was completed, the researcher reviewed

each independent information segment for the themes of interests where these

segments were checked for potentially new concepts. Whenever researchers

found a potential item stored in a transcribed segment, they compared it with

the initially coded themes and constructs.

To validate our codebook, the coding scheme was discussed with an individual

from the research and development team of the company who has both aca-

demic and industrial experience. Initial results allowed us to derive the initial

personality type keywords by open coding, and further we enhanced our results

by using several documents and reports where the themes were for (E/I); (i)

social interactions, (ii) social courage, and (iii) being conversationalist. For

(S/N), (i) factuality and fiction, (ii) experience and hunches, (iii) specifications

and generalizations. For (T/F); (i) being firm or gentle, (ii) personal values

and generalized principles, (iii) thoughts and evidence versus feelings. Lastly

for (J/P); (i) plan ahead or adapt as you go, (ii) product versus process, (iii) Act

quick and decide fast were found as the themes. In addition, the TAMS ana-

lyzer allowed us to tag a set of potentially suitable keywords for the next phase.

To select the keywords for our deck of 70 cards, we analyzed the frequency of

151

www.manaraa.com

similar keywords with respect to different interviewees. These keywords were

discussed with several rounds of feedback and revisited by a user experience

designer who also guided the picture selection process. The mapping between

the identified categories versus constructed question cards are presented in Ta-

ble 8.2.

Identified Themes Derived Questions on Cards
Social interactions 1, 8, 15, 22
Social courage 29, 36, 64
Skills and confidence in conversations 43, 50, 57
Being factual or fictional 2, 17, 23, 24, 30, 44
Relying on experiences or hunches 9, 10, 16, 37, 45, 51
Focusing on specification or generalizations 3, 31, 38, 52, 58, 59, 65, 66
Being firm or gentle 4, 5, 19, 25, 32, 46, 53
Focusing on values or principles 18, 26, 47, 60, 67, 68
Valuing thoughts or feelings 11, 12, 33, 39, 40, 54, 61
Planing a head or adapt as you go 6, 13, 20, 27, 35, 42, 56, 63
Valuing process over product 14, 21, 41, 69, 70
Acting quick and deciding fast 7, 28, 34, 48, 49, 55, 62

Table 8.2: The identified themes with respect to the derived questionson Cards

In an effort to validate the keywords extracted from preliminary resources such

as Keirseys work and with the selected situations, a concept map [97] was

created particularly based on the themes and the keywords (see Figure 8.3).

After conducting a theme analysis of the transcripts from the previous step, the

codebook was validated using the information stored, and the frequency of each

keyword in transcript was categorized for further analysis. The examination

and comparison of the data being as a continuous process where findings were

taken back to selected participants from the study until an expected saturation

has been either confirmed or verified, whenever a situation was identified, it

was compared with several other previous situations for understanding their

similarities as well as the differences. After finishing these tasks, we used axial

coding to organize and combine the keywords with the selected categories from

the transcribed documents and memos. Figure 8.3 represents a part of the

codebook based on the extracted keywords and personality traits.

8.2.2 Card Creation Phase

We prepared the initial version of the cards by using both the business situations

and Keirsey’s temperament sorter questions that we defined during the first

152

www.manaraa.com

phase. For each of the 70 cards (see Appendix I), we selected a hypothetical

situation and a keyword from the codebook. Next, we chose a picture with

creative commons license, which reflected the keyword and the situation that

was previously formed (see Figure 8.4 for a sample card).

Extroversion/Introvesion

Social courage Social InteractionsSkills and confidence
 in conversations

Contact Meeting
Room

PartyA
Nightout

Interaction

Sensing/iNtution

Thinking/Feeling

Judging/Perceiving

Focusing on specifications
 or generalizations

Being firm
or gentle Focusing on values or generalized principles Valuing thoughts

or feelings

Planing a head
or adapt as you go

Valuing process over product Acting quick and
 deciding fast

Being factual
or fictional

A Social
 Team A Teammate Arguing

InterrelationshipsConversation

Observant
Self-expression

A Projection

Hypothetical

Commonsense

Productivity

Team
Decisions

Activities Teamwork

Team
Player

Tasks

Problem-Solving

Activities

Goals
Complexitiy

Dealing with a
Problem A new job

A slogan

A ProjectworkNew position

Conflict

Team Meeting

Disappointment

A Discussion

Team Leader

Reward A vote

People at work

Connections

A difficult task

A Bad Answer

A Good Skill

A Personal
Value

İdea

Evaluation

A Team
Member

Flattering

Success
A Meeting

A Market
Study

Messy
Workspace

Contract

Strategy

A Teammate

Conflicting
Situation

OverdueA Small Defect

Working
Away

Product vs Process

Workplan

Tasks
Peer Review

Handle a Task
Decisions

Seeker

Haste

A new task

RequirementsA new job position

Relying on experiences or hunches

Figure 8.3: Illustration of the codebook extracted from emergent keywords

8.2.3 Comparison Phase

Finally, in the third phase, the cards were revised based on both the data col-

lected from the the next wave of interviews and the opinions of the experts from

the industry. To substantiate the reliability of this part of the study, we con-

sulted 10 experts (see Table 8.3) both from the software industry and academia

to discuss our findings, and the hypothetical situations were evaluated. As a

result, we designed 70 cards. All cards had two faces. The front had a picture

and a keyword that defined the theme of a picture. The goal was to visually

prepare the participants for the hypothetical situation that was written on the

other side of cards. Each situation had two different answers, which indicated

153

www.manaraa.com

the participants inclination on a trait, e.g. being introverted or extroverted.

Expert ID Title Age Years of Experience Education
E1 Software Manager 46 20 PhD.
E2 UX Designer 36 7 MSc.
E3 Graphical Designer 30 4 BA.
E4 Software Practitioner 31 6 BSc.
E5 Clinical Psychologist 43 16 PhD.
E6 Organizational Psychologist 39 11 PhD.
E7 Instructional Designer 38 9 MA.
E8 Academic 40 14 PhD.
E9 Academic 45 17 PhD.
E10 Academic 58 25 PhD.

Table 8.3: Expert Reviewers’ Information

Figure 8.4: A Two-faced Situational Context Card Example

To sum up, the situation context cards (see Figure 8.4 for a sample) were

designed to highlight situations mostly specific to software development domain

where participants had always two answer choices embedded in each card (see

Appendix I for all cards). A number of questions defined a cause and effect

relationship and sought for a single answer or an action. The card game relied

on the assumption that individuals would have increased tendencies to respond

correctly while playing a game rather than answering a series of static questions.

Ultimately, our goal was to introduce these cards to an individual or a group

154

www.manaraa.com

of participants in a game form to facilitate the identification process of their

personalty traits. Lastly, the processes of construction of situational context

cards lasted more than 70 hours of work with Simurg.

8.3 Rules of the Game

Here, we define a game form titled a game of revealing personality types. Ul-

timately, the expected outcome for this game is finding the personality types

of individuals. The actual players are a game master (GM) and members of a

software team3. The winning condition for each player is to learn his or her

true personality type by the help of our card based trait identification game.

A GM, as an administrator, has the main function to interact with the partici-

pants, thus operate the game. For example, a GM shall be showing the pictures

of cards and read questions to them. The players or participants should follow

instructions of GM. The game can be played by the members of the team to-

gether in 20-30 minute sessions. It shall be started by GM, who draws a card

from the deck and shows the first card’s picture to participants. He then starts

reading the situation, which is written on the back side of the card. The cards

also include two different directions with respect to situations defined on the

cards. Participants use a preconstructed sheet to fill in their answers marking

either a or b. For a one-to-one game, the game master might like to sort the

cards based on their colors on the game table and later calculate the results

of the experiment by counting the sorted cards. However, for multiple players,

the template mentioned above shall be used to record the findings. There are

70 cards and questions, which shall be asked to participants. This experiment

should also be conducted in a silent room, which should be performed without

a break so as to preserve participants’ concentration. Furthermore, the admin-

istrator (GM) should wait for multiple participants to mark their answers to

interview form before starting the next question.

3Game Master could be a researcher, a practitioner or a software manager who has the
basic knowledge to operate the game

155

www.manaraa.com

8.4 Quantitative Evaluation of the Survey Instrument

8.4.1 Pilot Study I

To estimate the response reliability of our game cards, we conducted multiple

measurements based on the selected 15 participants at a university environment

(see Appendix E). In this part of the work, we used individuals, who were novice

developers with at least a year of industrial experience. These individuals were

picked by the criterion of either whether either they have worked together as

a team for some projects or they are the individuals who worked in the same

environment at least for sometime. All the sessions started with an introduc-

tory statement. We provided a response form for individuals so that they can

mark their responses on the interview document. The interview form also had

additional feedback questions that might be useful for the next iteration.

8.4.2 Pilot Study II

The reinterview survey was one of the most commonly used methods for the

investigation the measurement errors [123]. According to Presser et al. “...the

reinterview survey was designed to replicate the original interview independently

so that the measurements from the two surveys can be assumed to be parallel. By

parallel measurements we mean measurements that have the same probability of

false positive and false negative errors and whose errors are independent” [124,

pp. 229].

In our case, the respondents were recontacted six weeks after an initial pilot

study and requested to participate in the same game-based card test once again.

The primary goal here was to replicate the original process and to gather the

required information from the same set of participants. The test/retest card

game revealed the reliability and acceptability of responses where we asked the

same questions once again within the same environmental conditions to the

same participants and hence to identify the flawed questions [124]. However,

variable errors could be observed in both interview (Pilot I) and reinterview

(Pilot II) process. “In this way, the measurement error variance associated

156

www.manaraa.com

with the original survey response could be estimated by the variation between

the original and reinterview responses ” [123, pp. 298].

8.4.3 Measuring the Reliability of Questions on Cards

To measure the reliability of cards, we used a common re-measurement method

to construct and analyze the answers of participants for the same question

in both pilot I and pilot II card tests by calculating the term called index of

inconsistency (I) [322], where I would be considered as the ratio of question-

level measure of response variance to the total response variances for a given

question. The variable called the reliability ratio is also represented by a 1−I =

κ, where κ is called Cohen’s measurement of reliability [323]. The index of

inconsistency (I) can be represented as

I =
g

p1q2 + p2q1
(8.1)

where g = (b + c)/n is the disagreement rate, and the total sample size is

denoted by n = a+b+c+d, where a is the number of participants who selected

the first option in both runs, d is the number of participants who chose the

second option in both runs, b is number of participants who choose the second

option on the first run, and the first option on the second run, c is the number

of participants who chose the first option on the first run, and second option

on the second run. The ratio shows the answer yes in the original interview as

p1 = (a+ c)/n. The yes answers in the reinterview is shown as p2 = (a+ b)/n.

The value qt = 1-pt, for t = 1, 2, designates the proportion of the answer no

for the interview and reinterview [124].

8.4.4 A Sample Calculation

To illustrate our basic idea stated above, we chose Question 18 (see figure

8.5), which can be considered as one of the questions that achieved a high

level of consistency from the respondents. The question states: “When you are

choosing the people you work with...”. The dichotomous answers are as follows:

157

www.manaraa.com

(a) “...the consistency and stability of their thoughts is the most important

factor”. And (b) “...harmonious relationships is the most important”.

When	 you	 are	 choosing	 the	 people	 you	 work	
with…	

“…the	 consistency	 and	 stability	 of	 their	
thoughts	 is	 the	 most	 important	 factor.”	 	

“…harmonious	 relationships	 is	 the	 most	
important.”	

Figure 8.5: Question 18 Selected from SCC as a Concrete Example

The survey results for question 18 are depicted in Table 8.4 that have been

labeled a, b, c, and d. As the retesting replicates the primary test, all measure-

ments can be considered as identical.

Interview Response
Reinterview

Response First Option Second Option
First Option a=10 b=0
Second Option c=1 d=4

Table 8.4: Interview Reinterview Table for Question 18

Table 8.4 is highly revealing in several ways. First, it shows that there are

10 persons who selected the first option in both runs. We observed only 4

participants who chose the second option in both runs. As Table 8.4 shows,

there are no participants who chose the second answers in first run and chose

the first option on the second run. In addition, we found only one participant

who chose the first option in the first test and selected the otherwise in the

second run. The index of inconsistency for the data in Table 8.4 is calculated

as I = 15.7%, therefore a high coefficient of reliability of κ = 84.3% can be

measured.

According to Biemer et al. [123], the acceptability for the response consistency

and reliability should be judged within these ranges:

158

www.manaraa.com

Acceptability =

Good I ≤ .20 or κ ≥ .80

Fair .20 ≤ I ≤ .50 or .50 ≤ κ ≤ .80

Poor I ≥ .50 or κ ≤ .50

(8.2)

In light of these remarks, we calculated all κ values for all the questions in

the questionnaire4. Table 8.5 summarizes the number of questions found in

predefined κ ranges. We selected 30% as the range for the cutoff values, and

we found the questions; Q4, Q21, Q22, Q24, Q26, Q27, and Q31 below the

expected reliability coefficient κ.

κ % Range Number of Questions
0 - .30 7

.31 - .45 9
.46 - .60 10
.61 - .75 14
.76 - .90 30

Table 8.5: The Range of κ numbers found for the entire survey instrument

From this data, we can see that this part of the study yielded statistically

significant results where only 7 of 70 questions were found problematic (one

question from (E/I) trait, and two questions from each (S/N), (T/F), (J/P)

traits were out of range). Therefore, we performed our calculations by dropping

these questions, and the ultimate results are shown in Table 8.6.

What is interesting in this analysis is that extroversion was observed as a domi-

nant dichotomy during the pilot study, which was somehow compatible with the

recent findings in MBTI research in the field of software engineering (e.g. [298]).

MBTI Type Number of Participants % in Sample Population
ENFJ 2 13
ENTJ 2 13
ESFJ 3 20
ESFP 3 20
ESTP 1 7
INTP 1 7
ISFJ 2 13
ISFP 1 7
Total 15 100

Table 8.6: Personality Traits found by Situational Context Cards in Pilot Study

4The calculations for all questions can be found in the Appendix F.

159

www.manaraa.com

8.5 Quantification of the Instrument: Average of Weights

Based on the hypothesized model constructed from the grounded theory per-

spective, this part of the work details these qualitative notions into a rigorous

quantitative model of personality traits particularly form a novel approach to

MBTI typology. To build a scale of measurement with quantitative characteris-

tics from MBTI, we conducted a survey based on the categories identified in the

previous section. In a classical viewpoint, Myers and McCaulley [276] suggest

that MBTI is a qualitative sorter where each question has equal importance.

However, unlike a typical MBTI test, we hypothesized that the significance of

the questions should differ in terms of their impact on the final output and

therefore should influence the results accordingly.

Further, this argument sets the stage for the quantification with respect to sev-

eral subcategories which may eventually be combined in a scale to form a better

instrument. In particular, it should have the ability for more precise measure-

ment of personality traits. This also accorded with our previously conducted

interviews, which reveals the fact that questions should be interpreted within

a level of importance; therefore, they should not be considered equally.

In light of our grounded theory model, we divided each dichotomy in three sets

of themes, which were identified by some keywords. By following our model

and the saturated categories explained previously, we formulated that extro-

version/introversion dichotomy can be identified by the indicators; (i) social

interactions, (ii) social courage, and (iii) individual’s skill and confidence in

conversations. For sensing/intuition dichotomy, three factors proved more ef-

fective on identifying that trait; (i) being factual or fictional, (ii) relying on

experiences or hunches, and (iii) focusing on specifications or generalizations

(detail orientation). Thinking/feeling dichotomy was defined by (i) being firm

or gentle, (ii) focusing on personalized values or generalized principles, and (iii)

valuing thoughts or feelings. Finally, for judging/perceiving individuals pref-

erences over (i) planing a head or adapt as you go, (ii) valuing process over

product, and (iii) acting quick and deciding fast or otherwise.

Table 8.7 summarizes the indicators that are potentially affecting the person-

160

www.manaraa.com

ality traits, the measurement of means, variances, standard deviations, and

average of weights with respect to the dichotomies adapted from Myers-Briggs.

Factor
ID

Description Mean S.D. Var. A. W. Traits

P1 Social interactions 3.77 0.69 0.47 0.80 E/I
P2 Social courage 3.14 0.56 0.32 0.61 E/I
P3 Skills and confidence in conversations 3.50 0.79 0.63 0.74 E/I
P4 Being factual or fictional 2.96 0.70 0.49 0.65 S/N
P5 Relying on experiences or hunches 3.56 0.77 0.59 0.79 S/N
P6 Focusing on specification or generalizations 2.95 0.76 0.58 0.55 S/N
P7 Being firm or gentle 3.68 0.65 0.42 0.69 T/F
P8 Focusing on values or principles 3.64 0.69 0.48 0.75 T/F
P9 Valuing thoughts or feelings 3.06 0.55 0.31 0.51 T/F
P10 Planing a head or adapt as you go 3.33 0.57 0.33 0.68 J/P
P11 Valuing process over product 3.69 0.58 0.33 0.77 J/P
P12 Acting quick and deciding fast 2.87 0.78 0.61 0.60 J/P

Table 8.7: Factors of Personality Traits, Descriptions, Means, Standard Deviations,
Variances, Average of Weights, and Traits

Using the final part of the survey instrument from the first case study (see

Appendix A), we conducted a personality type survey (on a 4 Point-Likert

Scale) to identify the importance of the factors that are affecting personality

constructs. In light of the collected data, the impact of the questions to the

personality assessment results have been calibrated based on the weights of each

question.

In the quantification of the questionnaire, it was found that the responses had

a high internal consistency (or reliability) where the overall questionnaire has

a Cronbach α of .71. The weights of each question was on a four 4-point

Likert scale ranging from very important (4) was assigned to a weight of 1,

important (3) with a weight of .75, moderately important (2) with a weight of

.50, and of little importance (1) with a weight of .25. The respondents were

asked to indicate weights for each of the factors extracted from the schematic

representation of grounded theory process (see Appendix E).

The average of weights can be calculated as follows:

Wi =

∑m
i=1

∑n
j=1wij

n
(8.3)

where m is the number of questions (i = 1, ...,m), n is the number of respon-

dents (j = 1, ..., n), and Wi is the average of weights for ith question.

161

www.manaraa.com

8.6 An Industrial Implementation

From an industrial point of view, a card game was conducted on-site on 63 soft-

ware practitioners so as to determine their MBTI based personality profiles (see

Appendix H for collected data). The participants were selected from a group

of individuals from case study I. As the arrangements were kindly requested by

the management, all individuals participated5.

To quantify our test results based on our card game, first we calculated the

factor correlations among the indicators affecting personality traits as shown

in the previous section. To assign a weight for each question, we used the re-

lationships between the SCC cards and the indicators found by the grounded

theory, which are depicted in Table 8.7. While each question was identified by

a category as shown in Table 8.2, the weighted factors for these categories were

calculated by using the values found in survey analysis. To find the person-

ality traits for each subject (e.g. being either E or I) , we counted responses,

calculated the weighted points for each category and further compared the two

weighted points.

The maximum value that extroversion/introversion trait can take was (E/I)max =

6.456. The results of this part of the study demonstrate that we were not only

revealing the MBTI types of the participants but also calculating a level of extro-

version/introversion value that may be comparable with other participants dur-

ing an analysis. The other three traits of personality had the maximum values

identified as follows: (S/N)max = 11.84, (T/F)max = 11.46, (J/P)max = 12.04.

Table 8.8 shows the number of industrial participants with their MBTI types

and their percentage value in our sample population.

Of the study sample, we conducted our game based personality test on 7 Project

managers, 24 Software developers, 8 Software Testers, 20 Software Specialist,

and 4 System Analysts. The present study enhanced our understanding of the

quantification of MBTI types. Instead of labeling a participant with a single

trait (e.g. E or I), our empirical findings were based on the percentage of

5See software teams subsection for selection criteria.
6If we treat each questions with the same weight this value would be 9.

162

www.manaraa.com

MBTI Type Number of Participants % in Sample Population
ENFJ 7 11.1
ENFP 9 14.2
ENTJ 8 12.7
ENTP 4 6.3
ESFJ 5 7.9
ESFP 3 4.8
ESTJ 1 1.6
ESTP 2 3.2
INFJ 3 4.8
INFP 8 12.7
INTJ 1 1.6
INTP 3 4.8
ISFJ 2 3.2
ISFP 2 3.2
ISTJ 5 7.9
Total 63 100

Table 8.8: Personality Traits found by Situational Context Cards in an Industrial
Setting

traits. It provided a new understanding of MBTI dichotomies on a quantitative

scale, which aimed to improve the significance level of MBTI scale especially for

team-based evaluations. An implication of this is the possibility of having more

precise measurements. For example, it is now possible to distinguish between

an individual who is 90% extroverted and someone who is 51% extroverted.

Based on the quantification scheme, the total percentages of the identified traits

with respect to job titles of the sample population are shown in Table 8.9.

Title Quantity Extroversion % Sensing % Thinking % Judging %
Project Manager 7 62 48 37 47

Software Developer 24 58 43 60 38
Software Testers 8 72 38 49 54

Software Specialist 20 57 40 42 46
System Analyst 4 62 45 39 47

Table 8.9: Overall Average Percentage of the participants with roles versus their traits

The results, as shown in Table 8.9, indicate that software testers were more

extroverted than the other roles in the sample population followed by project

managers and software analyst. Of the initial cohort, project managers were

found more sensing type while software developers are the most thinking type.

The majority of participants who responded to judging/perceiving trait felt that

they were more inclined to be perceivers. This was also consistent with other

personality traits studies (on non-software engineering domain), which mostly

found judging/perceiving are almost equal in numbers amongst the general

population.

163

www.manaraa.com

8.6.1 MBTI-Team Radar

A radar chart (graph) is a visual method of illustrating multivariate data in

a two dimensional polar chart for the analysis of multiple variables where a

set of variables represented together, which is suitable as a tool for comparison

among a set of items [324]. A common approach to interpreting a radar graph

is to read the values plotted using the data points. According to Harris: “Other

than readability, there is no limitation as to the number of variables that can

be included in a single graph. Whatever number of variables there are, they are

distributed equally around the 360’ of the circle. Each axis typically has a scale

along which one characteristic element is plotted for each data series involved in

the comparison. After all of the data elements have been plotted, adjacent data

points in the same data series are generally connected by straight lines forming

closed polygons.” [325, pp. 320].

Although a variant of team radar graph has been used in software process

improvement domain as “the agile team radar” (e.g. [326,327]), to the best of

our knowledge there is no prior study that combines MBTI and Team Radar

concepts.

This research proposes a novel use of MBTI-Team radar (or an MBTI radar

chart) with (dichotomous) polar coordinates of four traits guide researchers to

explore a team to visualize which traits (i.e. (E/I), (S/N), (T/F), and (J/P))

are dominating the group characteristics. To illustrate dichotomies, our radar

form includes all eight personality types, each divided into two axis. We used

a percentage scale (ranging between 0% and 100% and divided into four equal

parts) inside a team radar, which guided us to represent an individual on a

continuous and dichotomous scale.

164

www.manaraa.com

Figure 8.6 illustrates the conceptual figure for an empty MBTI-Team radar

graph.

Perceiving

Feeling

Intuition

Extroversion

Judging

Thinking

Sensing

Introversion

Figure 8.6: A MBTI-Team Radar Template

In this thesis, we investigated five software teams7 from Simurg, and illustrated

their trait structures by using an MBTI radar, we identified the team members

and calculated their percentage for each dichotomy, e.g. a person in (E/I) scale

can be found 20% extroverted, and therefore he is 80% introverted, in (S/N)

scale if she is 40% sensor, and therefore she is 60% intuitive, etc. For another

example, consider participant 48 from Table 8.10. On our scaling system this

individual would be marked 70% on extroverted coordinate and 30% on the

introverted scale. In this approach, even if someone was found extroverted, it

allows us to see what percentage the introversion level is, to his or her extro-

version degree. To the best of our knowledge, such a result has not previously

been published.

8.6.2 Software Teams

Among the 213 industrial participants from the first case study, we interviewed

a number of individuals to single out the available teams for this part of the

study. After a careful consideration, 63 participants in a group of different soft-

7The names of the teams are concealed due to privacy reasons.

165

www.manaraa.com

ware teams from the first case study were selected for this part. Apart from

individuals qualifications and their work experience as a team, a major selec-

tion criteria is the team’s availability to work with us during their hectic work

life. Another selection criteria was based on the maturity of teams, which was

defined by the team software process [328] throughout the software develop-

ment organization. In light of this information, we selected and conducted the

proposed card game on five software teams that can be identified as follows:

4 Triskele - Research and development team of five people.

4 Camelot - Software development team of twelve people.

4 Hector - Software development team of eight people.

4 Finn - Software development team of ten people.

4 Laran - Software development team of sixteen people.

8.6.2.1 Team Triskele

Table 8.10 illustrates the personality characteristics of the team Triskele.

Participant ID Job Title E/I S/N T/F J/P
P41 Project Manager 12%E 88%I 44%S 56%N 27%T 73%F 52%J 48%P
P46 Software Developer 70%E 30%I 40%S 60%N 25%T 75%F 33%J 67%P
P48 Software Specialist 11%E 89%I 12%S 88%N 4%T 96%F 33%J 67% P
P49 Software Specialist 67%E 33%I 25%S 75%N 32%T 68%F 55%J 45%P
P50 Software Developer 56%E 44%I 36%S 64%N 25%T 75%F 10%J 90%P

Table 8.10: Team Triskele with roles versus members’ traits

It is apparent from Table 8.10 that there is a moderate balance in personality

trait percentages for its team members. The percentage of intuition trait was

very high which seems consistent to bring achievements in the innovative re-

search effort. However, the most striking result to emerge from the data was

that feeling trait was dominating the team, which shows there was higher agree-

ment in the team than conflicts. In addition, perceiving was relatively higher

than judging, which supports the fact found from the interviews that partic-

ipants were inclined to use techniques from a set of agile practices instead of

plan driven methodologies. Figure 8.7 below shows the team personality traits

of team Triskele, scaled on an MBTI (team) radar format.

166

www.manaraa.com

Perceiving

Feeling

Intuition

Extroversion

Judging

Thinking

Sensing

Introversion

Figure 8.7: Team Radar for Team Triskele

8.6.2.2 Team Camelot

In the next team analysis, we calculated the personality traits of a team with

12 individuals. Table 8.11 shows the job titles versus some of the personal-

ity characteristics of the team Camelot. It is apparent from this table that

individuals such as project managers, system analysts who may be socially ac-

tive for their positions are more extroverted. Surprisingly perhaps, three of

the team members were found 100% extroverted. As team Camelot was con-

sidered as one of the most productive teams of the development organization,

the observed increase in extroversion could be attributed to the new tasks and

activities of software development that require more socially interactive teams.

For the other three dichotomies, the team showed a significant balance which

is consistent with those of other studies and suggest that a team with a variety

of attributes are expected to be more productive.

Figure 8.8 presents Table 8.11 data on a radar graph. From the graph, we can

see that the extroversion reported significantly more introversion. For the other

traits, most of the individuals are in the range between 25% and 75%, which

167

www.manaraa.com

Participant ID Job Title E/I S/N T/F J/P
P57 Project manager 100%E 0%I 67%S 33%N 52%T 48%F 39%J 61%P
P38 Software Developer 30%E 70%I 29%S 71%N 49%T 51%F 39%J 61%P
P40 Software Developer 19%E 81%I 39%S 61%N 34%T 66%F 49%J 51%P
P34 Software Developer 78%E 22%I 45%S 55%N 51%T 49%F 40%J 60%P
P47 Software Developer 36%E 64%I 66%S 34%N 57%T 44%F 65%J 35%P
P13 Software Developer 45%E 55%I 26%S 74%N 47%T 53%F 23%J 77%P
P45 Software Developer 55%E 45%I 43%S 57%N 40%T 60%F 40%J 60%P
P37 Software Tester 100%E 0%I 35%S 65%N 56%T 44%F 50%J 50%P
P44 Software Tester 100%E 0%I 28%S 72%N 59%T 31%F 61%J 39%P
P23 Software Tester 88%E 22%I 30%S 70%N 51%T 49%F 62%J 38%P
P24 Software Tester 55%E 45%I 56%S 44%N 38%T 62%F 28%J 72%P
P29 System Analyst 67%E 32%I 40%S 60%N 27%T 73%F 52%J 48%P

Table 8.11: Team Camelot with roles versus members’ traits

indicates that the team has a good balance of personality traits.

Perceiving

Feeling

Intuition

Extroversion

Judging

Thinking

Sensing

Introversion

Figure 8.8: Team Radar for Team Camelot

168

www.manaraa.com

8.6.2.3 Team Hector

Team Hector consists of four developers, a specialist, an analyst, and a manager.

Table 8.12 shows participants id, job titles, and the percentage of personality

traits found for the individuals from the team Hector. Similar to team Camelot,

team Hector is also dominated with the extroversion trait, and there is a mod-

erate balance on the other three dichotomous traits.

Participant ID Job Title E/I S/N T/F J/P
P2 Software Developer 78%E 22%I 60%S 40%N 20%T 80%F 22%J 78%P
P3 Software Specialist 67%E 33%I 60%S 40%N 47%T 53%F 62%J 38%P
P8 Software Specialist 57%E 43%I 52%S 48%N 40%T 60%F 55%J 45% P
P9 Software Developer 65%E 35%I 48%S 52%N 39%T 61%F 56%J 44%P
P10 Software Developer 89%E 11%I 39%S 61%N 42%T 58%F 45%J 55%P
P12 System Analyst 66%E 34%I 55%S 45%N 32%T 68%F 56%J 44%P
P25 Software Developer 100%E 0%I 59%S 41%N 34%T 66%F 55%J 45%P
P62 Project Manager 79%E 21%I 42%S 58%N 27%T 73%F 23%J 77%P

Table 8.12: Team Hector with roles versus personality traits

Figure 8.9 presents Table 8.12 data on an MBTI radar graph.

Perceiving

Feeling

Intuition

Extroversion

Judging

Thinking

Sensing

Introversion

Figure 8.9: Team Radar for Team Hector

169

www.manaraa.com

8.6.2.4 Team Finn

Table 8.13 provides the personality characteristics data for the team Finn. From

this data, we can see that there were ten software practitioners with the roles

such as software specialist, software developer, software testers, system analyst,

and a project manager in the team. Similar to team Hector and Camelot, results

indicate that team Finn also shows high extroversion, while the characteristics

of team members (i.e. S/N, T/F, J/P) on the other traits seem to be equally

distributed. The team also has more extroverted software developers than the

other three teams.

Participant ID Job Title E/I S/N T/F J/P
P5 Software Specialist 77%E 23%I 41%S 59%N 43%T 57%F 45%J 55%P
P6 Software Tester 76%E 24%I 33%S 67%N 59%T 41%F 67%J 33%P
P7 Software Specialist 91%E 9%I 41%S 59%N 51%T 49%F 39%J 61% P
P11 System Analyst 57%E 43%I 38%S 62%N 55%T 45%F 22%J 78%P
P15 Project Manager 59%E 41%I 28%S 72%N 36%T 64%F 73%J 27%P
P16 Software Developer 76%E 24%I 48%S 52%N 54%T 46%F 51%J 49%P
P17 Software Specialist 78%E 22%I 61%S 39%N 51%T 49%F 55%J 45%P
P18 Software Developer 91%E 9%I 57%S 43%N 32%T 68%F 34%J 66%P
P59 Software Developer 57%E 43%I 42%S 58%N 21%T 79%F 16%J 84%P
P61 Software Developer 48%E 52%I 34%S 66%N 59%T 41%F 40%J 60%P

Table 8.13: Team Finn with roles versus personality traits

Figure 8.10 shows the data in Table 8.13 on an MBTI radar graph.

Perceiving

Feeling

Intuition

Extroversion

Judging

Thinking

Sensing

Introversion

Figure 8.10: Team Radar for Team Finn

170

www.manaraa.com

8.6.2.5 Team Laran

As can be seen from Table 8.14 that the team Laran has the role of software

developer, software specialist, system analyst, team manager, software testers,

and a project manager, and it is also highly populated with extroverted indi-

viduals.

Participant ID Job Title E/I S/N T/F J/P
P1 Software Developer 78%E 22%I 62%S 38%N 59%T 41%F 38%J 62%P
P28 Software Specialist 55%E 45%I 38%S 62%N 69%T 31%F 55%J 45%P
P30 System Analyst 57%E 43%I 48%S 52%N 40%T 60%F 57%J 43% P
P31 Software Specialist 75%E 25%I 39%S 61%N 45%T 55%F 34%J 66%P
P32 Software Specialist 78%E 22%I 42%S 58%N 51%T 49%F 40%J 60%P
P33 Team Manager 49%E 51%I 63%S 37%N 33%T 67%F 57%J 43%P
P35 Software Tester 57%E 43%I 38%S 62%N 45%T 55%F 48%J 52%P
P36 Software Specialist 88%E 12%I 28%S 72%N 38%T 62%F 55%J 45%P
P39 Software Tester 68%E 32%I 46%S 54%N 53%T 47%F 79%J 21%P
P42 Software Developer 56%E 44%I 48%S 52%N 42%T 58%F 51%J 49%P
P43 Software Specialist 57%E 43%I 40%S 60%N 85%T 15%F 62%J 38%P
P51 Software Tester 34%E 66%I 40%S 60%N 32%T 68%F 39%J 61%P
P52 Software Specialist 75%E 25%I 63%S 37%N 17%T 83%F 56%J 44%P
P53 Software Developer 91%E 8%I 49%S 51%N 21%T 79%F 39%J 61%P
P54 Software Specialist 69%E 31%I 22%S 78%N 40%T 60%F 30%J 70%P
P55 Project Manager 100%E 0%I 43%S 57%N 48%T 52%F 33%J 67%P

Table 8.14: Team Laran with roles versus personality traits

Perceiving

Feeling

Intuition

Extroversion

Judging

Thinking

Sensing

Introversion

Figure 8.11: Team Radar for Team Laran

The single most striking observation to emerge from the data in comparison

171

www.manaraa.com

with other teams was that this team has the greatest balance on the traits (i.e.

S/N, T/F, J/P); the team average of participants is close to fifty percent, e.g.

S/N: 42%, T/F:47%, J/P:46%, etc. Figure 8.11 shows the data in Table 8.14

on an MBTI radar graph.

8.6.2.6 A Brief Discussion about Findings

For the team Triskele, the results acquired from the data collected from the

research and development team show that the team is relatively disconnected

from social gatherings (e.g. they are not directly working with the customers),

and there are no testers or a system analyst in their unit. As the team includes

several researchers who should work with a limited number of people. There-

fore, individuals who were selected for such teams are to be more inclined to

introversion. This result was compatible with early days of software engineering

landscapes when the teams were working in isolated environments, and practi-

tioners were found to be more introverted. According to our results, this type

of introversion was only observed in the research and development team, as we

found all other four cross-functional software development teams were highly

extroverted. For the traits (S/N, T/F, and J/P), all teams were in balance

according to our analysis.

In contrast to team Triskele, other four teams namely Camelot, Hector, Finn,

and Laran were found to be closer to the extroversion scale. The other four

software teams were considered to be working in socially interactive settings.

In particular, they are the teams which had members with strong focus on

stakeholder engagement. In addition, the testers, system analysts and managers

of the other four teams were found mostly extroverted. Lastly, for the teams

working in isolated environments, the introverted members may be preferred.

However, if the team needs to be in contact with customers, the extroverted

people might work better, and furthermore for the traits (S/N, T/F, and J/P)

team profiles should be constructed to balance the traits.

172

www.manaraa.com

8.7 Case Study II: Threats to Validity

In this section, we discussed several potential threats we addressed earlier to

deal with validity problems. To cope with problems of construct validity, first

we prepared our questions parallel to the Keirsey temperament (sorter) ques-

tionnaire, and secondly we conducted two pilot studies with the same group of

participants to identify flawed questions. Before the tests, we also asked the

participants a short version of Keirsey’s questionnaire to check the reliability

of initial questions and to compare its understandability. After creating our

game based MBTI instrument, which was expected to precisely measure the

personality traits of individuals, we conduct semi-structural interviews to vali-

date the questions of the survey instrument. All questions are constructed from

the themes that are captured from interviews based on Keirsey temperament

questionnaire. In addition, the preliminary results from the pilot studies were

published so as to get early feedback from the academic peers. Before conduct-

ing an industrial evaluation of tests, the final version of cards was discussed

with several experts from academia.

To deal with internal validity problems, first for the both pilot studies we used

the same number of participants to avoid nonequivalent control group problem.

Secondly, during the time between two pilot studies, there was no outside event

that might be a threat to validity; therefore, we were able to prevent any history

effect. Thirdly, participants were only exposed to the same test two times,

therefore we did not observe a testing that might potentially affect or threaten

the internal validity. Fourthly, we did not change our survey instrument (i.e.

measuring device), which could potentiality be a threat to validity. Lastly,

experimenter may consciously or unconsciously change the result of the study.

To avoid this, we conducted the interview in a game form by which we motivate

the participant to focus on the situational context rather than questions.

To avoid from the external validity problems, for the two pilot studies, we

built within-participants design in which we used the same participants to take

measures for the two attempts. One advantage of this work is that when the

same participants contribute to the same conditions, it increases the chance of

173

www.manaraa.com

having statistical significance [121]. Finally, from the reliability point of view,

we detailed the data collection and documented the protocols that were used,

and further we shared all components of the game-based survey instrument.

8.8 Chapter Summary

This chapter presented the results of the second case study, which was based on

the game-base survey instrument designed for revealing the personality traits of

software practitioners. We proposed a deck of (70) two-sided cards that describe

hypothetical business situations based on real ones. We envisioned that the

cards should be built from categorical themes based on “the content analysis of

the verbal behavior” [329] of selected software practitioners. One side of each

card shall consist of a keyword and a relevant picture to deepen the impression of

the event or the situation. Moreover, events selected for the situational context

should be placed with a similar pattern to the Keirsey temperament (sorter)

questionnaire, i.e. available in [281]. The validation of cards by conducting a

pilot study was described and the quantification process was explained in detail.

Furthermore, an industrial evaluation was conducted using five software teams.

The teams were identified regarding to its practitioners personality traits and

the results were plotted using a MBTI radar graphs. The results of the analysis

will be discussed in the next chapter of the thesis.

174

www.manaraa.com

Part V

Discussions & Conclusions

175

www.manaraa.com

Chapter 9

Discussions

Case Study I:
Val idat ion
Interviews

Case Study II:
Validation of the

Inst rument

Industr ial Implementat ion

Research Requirements

Empirical Evaluation

Figure 9.1: A part of the conceptual overview of the research

176

www.manaraa.com

9.1 Introduction

This chapter discusses the two conducted case studies. First, we discuss the im-

plications and some limitations of the constructed structural equation models,

and the impact of roles on our productivity constructs. The validation inter-

views, which are a form of industrial discussions conducted in Simurg are also

presented. In the following section, the interpretation of the results from the

second case study as regards the software teams are discussed. The latter part

of this chapter revisits the research questions and hypotheses from Chapter 1

to evaluate their truth or falsity.

9.2 Discussion of the Case Study I

In the first case study, we empirically evaluate the hypothesized relationships

between the latent constructs and several factors that are affecting them (see

Appendix C for survey data). The results confirm that productivity is highly as-

sociated with social productivity, and moderately associated with social capital.

There is, however, a moderate correlation observed between social productivity

and social capital. In particular, these empirical findings strongly support the

notion that social factors dramatically influence software productivity. Return-

ing to the social and organizational issues posed at the beginning of this study,

it is now possible to state that most of the factors selected from the literature

are affecting the productivity of a software development organization.

In general, the current findings add substantially to our understanding of the

economic and social factors of productivity, which can be quantified using the

SEM. In addition, this study is currently the most comprehensive (empirical)

research that holds a significant value for industry and academia especially in

that it develops a multifactor productivity measure. The multi-dimensional

factors structure of the tripartite SEM model includes seven variables for mea-

suring three of our constructs. To the authors’ knowledge, this is also the first

study of this nature to assess the implications of roles, team size and social

capital on software development.

177

www.manaraa.com

9.2.1 Validation Interviews

To understand how well we measure the productivity scale, one of the issues that

emerge from these models is a need to evaluate them by a series of model vali-

dation interviews [144] with individuals from the management team of Simurg.

We validated our models with the company by asking participants questions

about the factors in the models and their opinion about the validity of these

models such as “What do you think about the company-based results we have

found with SEM models?”, “Do you think that any factor is missing or misrepre-

sented in the productivity model? If so, which ones?”, “Does your organization

benefit from this new productivity perspective?”, “Do you think these results may

help the software development organization to improve their productivity?”

As the management team discussed a series of simplified version of these mod-

els in a previous focus group study [330], they were delighted to examine the

outcomes in this part of the work. In particular, they were mostly interested

in Model IX, Model X, and Model XI. The interviewees were encouraged to

comment on the relationships between the predictors, and latent constructs.

Although some of the interviewees suggested some minor alterations about

sorting the priority of factors, most of the participants had found these re-

sults consistent with respect to their expectations. The overall results of our

structural models help the management team to discuss about the social fac-

tors, quantified latent constructs, and most importantly methods to improve

their organizational productivity by using their implications.

Lastly, the results of this study indicate that software development organiza-

tions should be able to use our technique for measuring their organizational

specific factors of productivity. An implication of this is the possibility of the

management team’s constructing a scale and identifying the causal relationships

between indicators to see how causal ordering happens among these variables.

9.2.2 Limitations

The present study has a number of limitations. Firstly, the literature review

on the factors of productivity is limited to the data we found in the literature.

178

www.manaraa.com

Therefore, all SEM models are limited with the factors we were able to identify.

Secondly, although we have nearly two hundred participants from an industrial

company (Simurg), which can be considered as a substantial sample set in terms

of software engineering studies to draw some empirical conclusions, we collected

our data from a single software company, which should be tested with different

settings for model comparison. Thirdly, there are possibilities for inadvertent

sampling bias. Hence, to test the significance of common method error, models

with more than two latent variables were tested for a single factor solution.

Fourth, although this study benefits from an adequate sample size according to

the SEM literature, we may extend our study to a greater sample size in a wider

set of companies. To protect participants’ confidentiality, participants were

ensured their anonymity. Although there was no enforcement on the company

level, we were able to obtain a substantial set of the data. Fifth, this work

relies on a self-report measure. Therefore, we were unable to identify whether

the same results can be observed with other data collection methods. Moreover,

we conducted a cross-sectional study, i.e. our survey was conducted at a single

point in time to obtain the variables and the constructs. Accordingly, the

direction of causation and causal ordering cannot be determined by the collected

data that does not provide significant substantiation for causality. In other

words, all our models are based on correlational data that cannot be used to

draw firm conclusions about the causal relationships. However, case studies and

surveys were paired together as multiple methods to reduce the method bias.

There are only a few studies in the software engineering literature concerning

the quantification of factors affecting the productivity of software development

especially by using a sophisticated method like structural modeling. There are,

for example, a SEM model for application development productivity [331], and

a SEM model of feasibility evaluation and project success [332]. However, with

a lack of evidence from other studies, caution must be applied, as the findings

for now might not be transferable to all software development organizations.

179

www.manaraa.com

9.3 Discussion of the Case Study II

The primary intent of the second case study is to design a game based instru-

ment to identify personality types of individuals involved in a software develop-

ment process. The instrument designed for personality tests aims to measure

a fragment of human behavior. Therefore, evaluation of such an instrument

should be validated by experimental investigations. To evaluate the reliabil-

ity of questions, the card game was tested twice on sixteen participants in a

six-month period (see Appendix E for both data sets). The contexts of these

cards are built upon several business situations. We used grounded theory to

analyze a series of interview data and compile keywords with different mean-

ings for each situation that are identified and used in our card design process.

Ultimately, the outcome of the game is the personality trait of an individual

in an MBTI compatible scale. As a second step, we use these cards to reveal

the personality types of 63 industrial practitioners (in a number of different

teams) with a variety of different roles in a software development organization

(see Appendix H). In addition, we use a questionnaire to identify the factors

that potentially comprise the four Jungian personality types (in a 4-point Likert

scale), which is based on the observation that are made in Simurg. This survey

is used for calculating weights for each of the grounded factor potentially af-

fecting the personality traits. Using this information, we calculate the average

of weights for all questions (see Appendix G). We apply the results to our card

game to discover the quantified form of personality types. In most industrial

cases, the interviews reveal that participants who realized the personality dif-

ferences among their teammates start questioning ways to improve their ability

to communicate.

9.3.1 Validation of the Instrument

The results obtained from the preliminary analysis of the overall percentage of

team traits are shown in Table 9.1

Figure 9.2 is a graphical representation of the data in Table 9.1 on an MBTI

radar graph. The radar chart below shows the overall team traits where different

180

www.manaraa.com

Team Name E/I S/N T/F J/P
Triskele 43%E 57%I 31%S 69%N 23%T 77%F 37%J 63%P
Camelot 64%E 36%I 42%S 58%N 47%T 53%F 46%J 54%P
Hector 75%E 25%I 52%S 48%N 35%T 65%F 47%J 53% P
Finn 71%E 29%I 42%S 58%N 46%T 52%F 44%J 56%P
Laran 68%E 32%I 44%S 56%N 45%T 55%F 48%J 52%P

Table 9.1: Overall Percentages of Team Averages on Team Personality Traits

colored drawings correspond with different team averages for the four traits. As

can be seen from the figure, the overall extroversion is higher in all teams where

the average of other three traits converge between the second and the third layer

of spiderweb graph that should be interpreted as the existence of a team balance

in terms of personality traits that were observed in most of the study cases.

Perceiving

Feeling

Intuition

Extroversion

Judging

Thinking

Sensing

Introversion

Figure 9.2: The Averages of Personality Traits for All Teams

These results, however, are consistent with those of recent studies and suggest

that, because of the increasing demand for customer oriented activities, software

business needs more sociable individuals, and therefore extroversion within the

team members is likely to become more visible. This study confirms that some

personality traits are more inclined to align themselves with specific develop-

ment roles, e.g. the extroverted individuals are found to be software testers.

For the traits (S/N, T/F, and J/P), the team shows a good balance among its

181

www.manaraa.com

members who could facilitate the collective behavior (i.e. social cooperation)

among its members.

ENFJ 12.7% ENTJ 6.3%
INFJ 0% INTJ 1.6%

ENFP 28.6% ESFJ 7.9% ESFP 6.3% ESTP 1.6% ESTJ 0% ENTP 4.8%

INFP 20.6% ISFJ 1.6% ISFP 1.6% ISTP 0% ISTJ 1.6% INTP 4.8%

Table 9.2: Periodic Representation of the Percentage of Practitioners in the Sample

Lastly, Table 9.2 represents a periodic classification of the personality types

found in Simurg where 14 different personality types were identified using our

game-based instrument. The trait that was found the most frequent was ENFP,

where INFP, and ENFJ percentages of the population were found slightly higher

than the other traits. From a temperament perspective, it is evident from the

table that practitioners mostly populate the idealist and the rationalist columns.

The periodic table offers a novel perspective for understanding the personality

traits found in a software development organization, and it is rendered easier to

envision the missing types of personalities if this approach is used for personality

based team configurations.

9.3.2 Limitations

A number of limitations need to be considered. First, all kinds of personality

tests build upon self report (i.e. subjective evidence), which inherently involves

the possibility that participant report false choices. Although the game-based

approach was likely to improve participants’ motivation to reveal true prefer-

ences, to deal with this issue, we informed the participants that the results will

be kept confidential, and announced that there is no wrong or right answers.

Secondly, the first pilot assessment was conducted at a single point in time,

which means it was conducted as a cross-sectional study. To address this prob-

lem, we conduct a replication study using the same participants and analyze

the differences between the two findings.

182

www.manaraa.com

9.4 Revisiting the Research Questions and Hypotheses

In this section, the research questions and hypotheses from Chapter 1 are dis-

cussed in the light of the two industrial case studies. This study has three

main objectives; (i) build a productivity model based on the identified factors

affecting it, (ii) investigate a set of team-based parameters and roles and team

configurations over the productivity, (iii) explore the personality characteristics

of software practitioners using a game-based personality type indicator. In light

of these objectives, we created six research questions and three hypotheses.

RQ1: Can we quantify productivity by using a set of indicators and

with the latent constructs (i.e. social capital and social productivity)

that are potentially affecting productivity?

To address the first research question, we propose a set of productivity models

with a number of latent constructs by using statistical techniques. We consider

software productivity as a latent variable (i.e. a construct not directly observed)

in which a measurement scale for indication of the factors affecting software de-

velopment productivity should be established. Such efforts can boost a potential

for understanding the impact of these factors and be useful for improving the

productivity of software development. This question has been answered by the

industrial case study I, Chapter 7.6, which revealed positive correlations among

several factors that are indicating the two of our latent constructs.

RQ2: Can a positive correlation between productivity, social pro-

ductivity and social capital be measured for software development?

To address the second research question, we presume that the software prac-

titioners are intellectual workers who continuously collect and process a series

of information (e.g. requirements, technologies) into a set of knowledge that

actualizes as software artifacts. At the same time, the knowledge assets em-

bedded inside the activities of a software development are used for generating

an economic value. This value, however, should not only be determined by

the outcome of the production process but also (i) as the human part of the

183

www.manaraa.com

capital which encompasses the value added to the workers during the process

and, (ii) as the social capital (i.e. embedded resources in social networks [249]),

which is a form of capital captured by trustful social interrelations. In order to

bridge the gap between formal and the social world of software practices, we

propose a valuation of a software development productivity which should not

only be realized by financial indicators in the form of the capital but also with

its intellectual capital, and in particular in terms of both social productivity

and capital. This question has been answered by a part of the industrial case

study I, Chapter 7.8, where we built a tripartite SEM Model.

Hypothesis 1: There is a significant correlation between the fac-

tors affecting software development and the productivity of software

development.

In light of this argument, software productivity should be considered as a multi-

dimensional concept that needs to be carried out from both sociological [4], and

economical [16] perspectives. Productivity improvement is one of the main con-

cerns of a software organization, which starts very early in any software devel-

opment life cycle. It is a commonly used notion in software engineering, yet it is

a concept difficult to define precisely. Although a generally accepted definition

of productivity is lacking [10], it can basically be considered as the production

rate or capacity of a process - something that agile software development often

terms as the project velocity.

Moreover, we consider productivity as a value creation activity in a specific time

period, which is, in general, hard to quantify. Boehm [16] reports the notion

that several factors are to be found in the attributes of people and their interac-

tions should be undertaken for the productivity improvement efforts. As pre-

viously mentioned, research has indicated that several factors such as size of a

project, the development environment and the technologies (e.g. programming

language) have a significant impact on software development productivity [17].

Based on the identified factors, we build several advanced SEM models, and test

them with data collected from a software development organization. Next, we

184

www.manaraa.com

analyze these models by using a series of statistical techniques that are embed-

ded in the SEM methodology. The results of the empirical evidence presented

in Chapter 7 indicate that several social and economic determinants extracted

from the literature potentially affect the productivity of software development,

and therefore we have found reasonably strong support for Hypothesis 1.

The second group of research questions focus on the relationship of roles and

our latent constructs with respect to team based parameters such as actual

team size, ideal team size and the work-experience of the practitioners.

Research Question 3: Can we observe a relationship between roles

of software practitioners and the observed team productivity?

According to the knowledge extracted from the conducted interviews, roles

assigned to practitioners and size of a software team are found to be the two

vitally important factors for improving the software team productivity. To

observe their relationships, we ask the participants about a set of questions

about team size and their effects on the team productivity. The analysis given

in Chapter 7 confirms the observable relationships between roles and opinions

of the software practitioners on team productivity.

Research Question 4: Is there any empirical relationship between

social capital and identified variables to measure the variations in

software team productivity?

Moreover, we analyze the impact of software roles and the team-based fac-

tors affecting software development productivity. The statistically significant

pairwise correlations among the identified pairs are shown in Table 7.9, which

confirm that there is a negative association between social capital and the years

software practitioners spend in Simurg.

Hypothesis 2: There is an observable relationship among the per-

ceived team productivity, roles and our hypothetical (latent) con-

structs of software productivity

185

www.manaraa.com

The empirical evidence collected and presented in Chapter 7 confirm that there

is only a negative relationship between one of the latent constructs (i.e. social

capital) and the time a software practitioner spend in the software company.

Although we found pair-wise relationships between some of the team-based pa-

rameters, we have not identified any other statistically significant relationships

between other latent constructs and team based parameters. Thus, we have

found moderate support for Hypothesis 2.

The classical vision of software production considers software practitioners who

seek to maximize their utility alone. However, economic games offer a differ-

ent perspective by perceiving the teams as an interacting ecology of networks.

Therefore, there could also be long-term benefits to construct games for im-

proving software development and team productivity. A game-based approach

is found to be naturally motivating for maximizing the team productivity. To

build a personality-profiling instrument, in the third part of this study, we pro-

pose two research questions:

Research Question 5: Can we reveal the personality traits of

software practitioners by using a context specific, game-like profiling

method?

To answer this question, we first created a situation based, context dependent,

MBTI compatible, game like personality test applicable to the software devel-

opment practitioners and teams. To this end, we conducted several interviews

based on the key context of psychometric questionnaires. By using the tran-

scriptions organized through the grounded theory analysis and collected from

industrial settings, context specific questions were prepared. The construction

process can be seen in Chapter 8, Section 8.2, the rules for the game can be

found in Section 8.3.

Research Question 6: Can we build a visualization instrument to

illustrate software team personality types?

To address these questions, first we conducted an industrial case study with the

questionnaire that is statistically validated in Chapter 8, Section 8.4. Secondly,

186

www.manaraa.com

to explore different team combinations, five teams were selected from Simurg

for personality type investigation, and the results were illustrated in a special

form of radar graph, which we termed as MBTI radar. The team details are

illustrated in Chapter 8, Section 8.5.2

Hypothesis 3: Personality characteristics of individuals in soft-

ware development teams can be revealed and illustrated by using a

context specific game-based profiling technique.

The empirical evidence collected from five different software teams are presented

in Chapter 8. We can confirm that extroversion is a dominant trait in the

observed software teams. All of the software testers interviewed except one

are found extroverted while software developers seem to have both introverted

and extroverted characteristics. Project managers, on the other hand, rated

usually high in extroversion scale. It is therefore likely that testers and project

managers are observed to be gravitating towards extroversion. For the most of

the participants, however, the three other personality traits (S/N, T/F, J/P)

are mostly in balance among the teams (see Figure 9.2) and further details can

be found in Chapter 8, Section 8.5.2. In brief, we have found moderate support

for Hypothesis 3.

187

www.manaraa.com

9.5 Chapter Summary

This chapter showed the discussion over the two industrial case studies, their

limitations and validation techniques. The research questions and research

hypothesis in Chapter 1 were discussed here to extend our understanding of

the subject matter. The next chapter will give an overview of the conclusions

of the both industrial case studies, contributions, and future work. The main

objective of the next chapter is to present the conclusions of this research.

Next, the researchers also will present the research contribution and examine

the limitations of the present study. Finally, some future research possibilities

will be presented which could build upon the present research study.

188

www.manaraa.com

Chapter 10

Conclusions and Future Work

10.1 Introduction

The goal of this chapter is to derive a set of conclusions from the two industrial

case studies. It starts with our model proposition for software development

productivity and gives some conclusions for the first case study. Further, it

continues by giving some details about game based personality analysis, and

conclude the second industrial case study. In the final section of this chapter,

overall research implications and future directions for the research are discussed.

10.2 Industrial Case Study I

The following conclusions can be drawn from the present study. Our empiri-

cal evaluation shows conclusively that there is a significant positive correlation

among the latent constructs, all of which can be explained by the identified

factors. Based on these correlations, the empirical findings in this study pro-

vide a new understanding of productivity in terms of social productivity and

social capital. Therefore, it is evident that there is a relationship between

social capital and social productivity; while social productivity has more im-

pact on productivity. With regard to practical implications, we conclude that

social capital and its transformation to social productivity deserve more atten-

tion because this process has the potential to improve software development

189

www.manaraa.com

productivity. The team factors with respect to the roles of the participants,

which are performed in the second part of the analysis promotes that there

were significant correlations between several team based variables and our la-

tent constructs. For example, individuals who are more experienced in the

software development organization were observed to work in larger sized teams

and they are inclined to think that the social capital was of less importance.

Given such theory about the connections between productivity and factors af-

fecting it, it is possible to interpret that the relationship between productiv-

ity and social capital is mediated by social productivity (see Chapter 7, Fig-

ure 7.12). Taken together, these findings enhance the understanding of the

management team of a company about productivity factors from the software

organization’s point of view. They offer a useful method of quantification for

the latent constructs. However, it is recommended that further research be

undertaken to examine the associations among productivity constructs.

This study makes marked contributions to the software productivity literature.

As previously mentioned, Jones reported that there are yet no effective mea-

surement ways found for software development productivity [10]. Therefore,

this study can be considered as a first attempt to measure the software de-

velopment productivity with the factors found from the literature and further

evaluate the results from an industrial perspective. Although several previous

studies mentioned the importance of social aspects of software development,

the implications of social capital on software development productivity has not

been deeply investigated. To bridge this gap, we build several models, and

introduce the notion of social productivity of software development and link

it with both social capital and software development productivity. Taken to-

gether, our approach could assist the management team of a software develop-

ment organization to identify and quantify company-specific factors to improve

organizational productivity.

Future research should therefore concentrate on the investigation of validity of

the latent constructs with samples from alternative software organizations in

several different settings. Such a study would be of great value for understand-

190

www.manaraa.com

ing the productivity dynamics of a software development organization and for

managing the factors that are potentially affecting the structure of an organi-

zation.

10.3 Industrial Case Study II

Software projects face several challenges in their dynamically changing orga-

nizational environments. These challenges affect software practitioners who

have a set of distinctive personality types. The members of the software teams

socially interact to perform a series of tasks or assignments in a software de-

velopment project. In fact, one of the key components of success in a software

development organization is selection of the right employee or a team for the

right tasks. From a technical viewpoint, skills of the individuals should match

with the required talents and experience. However, to improve software pro-

ductivity, the social aspects such as individuals’ compatibility in a team has

emerged as a research interest with a focus on personality traits over software

team configuration [333], which directly affects the quality of knowledge ex-

change among the team members. It is therefore not surprising to discover

that several researchers in the field of software engineering have focused on the

effects of personality types on the software development process and organiza-

tional performance [334–336].

The theory of games and its implementation on software development organi-

zations can provide a way to explore the effects of social structures on team

composition, where we can use this information for creating better team config-

urations. An economic mechanism involves designing the rules for the economic

activities that govern the social interactions of the participants. These rules,

for example, can be designed to motivate individuals by stimulating them to

behave in a certain manner, and to achieve certain economic or social outcomes.

Finally, a mechanism establishes the fabric between the actions of individuals

and social landscapes of software organizations. We suggest that, a mecha-

nism enables us to maximize the economic and social outputs of the software

development effort - through modeling the structure of software teams and fur-

191

www.manaraa.com

ther envisioning a software development organization. We aim to establish a

structural improvement for a software team based on the fact that the quality

of organizational production relies on the structure of the organization [337].

Based on the selectable parameters for desired goals or given objectives, we de-

fine a mechanism as a game form. It is built on several inputs from individuals

in order to produce the desired outputs. Our goal is to dynamically portray

the personality traits of an individual for designing an optimal team structure

using this game form. The game is designed to motivate individuals to reveal

their personality types to assist building more effective team configuration.

A software team comprised of participants with several different characteris-

tics, who are bound to frequently interact. Consequently, compatibility of their

personalities becomes an important concern for the team success. Over the last

decade, the personality tests have become a standard tool for assessing individ-

uals in a typical hiring process [338]. Regardless of being agile or traditional, a

software team is formed to respond to the key challenges such as the increased

diversity in activities and the required interactions in a software development

process. During the interviews, we observed a relationship between the agile

proponents and the practitioners with perceiving trait. Nearly all individuals

we interviewed have a significant inclination to be agile, and are found to be in

the perceiving trait. Thus, we can conclude that our approach is also useful for

understanding the team members compatibility or tendency to use agile or plan

driven methodologies based on the selections between socio-type (J) and (P).

Consequently, situational context cards shall provide a mechanism for balancing

agility and discipline from a team configuration perspective to some extend.

In the second case study, we have demonstrated that a game-based approach

is relatively easier to reveal the true personality types of individuals than a

paper-based alternative. Such an approach should further improve our ability

to build or configure more effective software teams or perhaps in the process

of integrating a new member to software team structure. Our approach con-

tributes to a software development process by illustrating a team’s personality

structure on team radar. In practice, it will be useful not only for building

192

www.manaraa.com

software development teams but also having a favorable selection from a set of

individuals with the same skill set with different personalities. In job applica-

tions for example, the approach might be useful for choosing the most suitable

person from a group of candidates by using an observable variability in aspects

of their behavior. Moreover, we believe that our approach has the potential

to supersede the paper based MBTI tests, particularly developed for software

development organizations. However, our findings may not be extrapolated to

all software companies. Further studies, which take these outputs into account,

will need to be undertaken.

10.4 Research Contributions

The key contributions of this research are classified into two aspects; theoretical

and practical. From a theoretical point of view, to the best of our knowledge,

this is the first published research study that considers software team configura-

tion as a mechanism design problem and proposes a game-based team configu-

ration model using the personality traits of individuals. This model was built to

accommodate a rigorous way for understanding effective team configurations.

From a practical point of view, it was applied to reveal the software develop-

ment team configurations with respect to practitioners’ personality types. This

study provides strong support for the conceptual premise that a game based

approach can be used successfully to reveal the personality characteristics of

software practitioners.

The second theoretical contribution is to build a foundation for understanding

the social and value dynamics of software development. Before building a set

of empirical models of productivity, we define the following findings to make

several contributions to the current literature. Firstly, we formulate software

development productivity as a latent construct to model the software develop-

ment process based on the economic and social factors found from the literature,

which are potentially affecting it. In order to build a safe passage from the tech-

nical world of information artifacts into the factors affecting the social world of

software development, we select a known model of social capital. To understand

193

www.manaraa.com

the relationships between these two constructs, secondly this study introduces

the notion of social productivity for software development.

From a practical point of view, the empirical relationships among these fac-

tors and the constructed models were validated by an industrial case study. In

an effort to link these hypothetical models and relationships, eleven structural

equation models are iteratively designed so as to demonstrate the relationship

among these social constructs and their affecting factors. By combining quanti-

tative and qualitative aspects inherently, SEM models are capable of measuring

the relations between the constructs and the selected factors by using empirical

observation from the field. These findings, while preliminary, confirm a dy-

namic relationship between the selected social constructs of productivity, social

productivity, and social capital. These relations can be measured for a software

development organization to quantify a customized model that could be useful

for improving organizational success.

The third theoretical contribution is that we visually extend the team-based

information architecture and improve the representation skills of software man-

agement. First, to enable managers to select and tailor not only a process

but also roles for their activities of software development, a visual summary

of roles in different development methodologies is made. From an empirical

point of view, this chart helps researchers to reveal the actual relationships

between project roles and previously identified social constructs. Secondly, a

novel periodic table approach is introduced, which can be used to visually illus-

trate the percentages of personality characteristics of software organization as

a whole. Empirically, the identification of the organizational sample outlined

the defined characteristics. Thirdly, a special form of radar chart, MBTI-Team

Radar is conceptualized. Then, it is used to visualize the collected data re-

garding to personality characteristics of software practitioners as a whole team.

Consequently, all of these techniques provide software managers with a way

of visualizing the impact of their team designs, or their personnel selections.

It also helps them to improve software team success, and therefore potential

return on the investment.

194

www.manaraa.com

10.5 Recommendations for Future Work

In this final section, we discuss some of the research possibilities for future

work regarding how the next level efforts of the study should continue. These

efforts can best be treated under three headings: theoretical, empirical, and

representational improvements.

Firstly, the game theoretical model can be improved by designing new games.

For example, in future investigations it might be possible to conduct action

research in order to investigate the social interaction of software development

teams by using the prisoners’ dilemma framework, which is one of the most

significant areas of research in the field of game theory. Such a study can be

helpful for revealing the problems of coupling of two practitioners (e.g. pair pro-

gramming or peer reviews) that should detail relationships between the software

practitioners with distinctive personality traits.

Additionally, in order to improve the performance of our game-based method,

more empirical case studies should be performed by using the game approach

for revealing personality types of individuals in different software organizations.

For example, new cards may be designed and the game should be balanced

regarding gained experience with more team-based sessions.

Secondly, we confirm that understanding how factors impact the software devel-

opment productivity will directly improve the economic viability of a software

system. However, this knowledge can be enhanced by further empirical studies.

Theoretically, the structural equation models could likewise be improved by

gathering more factors from the literature for all of the three latent constructs.

Practically, these models should also be empirically tested on other software

development organizations for more generalizable results. Therefore, more re-

search on this topic needs to be undertaken before the connection between the

latent constructs and the factors affecting them are more clearly understood.

The experience from the field suggests that empirical analyses alone may not be

enough to convince the management for these types of improvements. Equally

important, several visualization methods have emerged naturally as a way of

presenting our findings during this study. This researcher believes that the

195

www.manaraa.com

results of this thesis should be properly illustrated; therefore, further research

should be done to investigate more representation techniques for the gathered

data and initial findings. Future studies on the visualization techniques to

improve the periodic table form or the role charts are therefore highly recom-

mended.

196

www.manaraa.com

Bibliography

[1] R. Conradi and A. Fuggetta, “Improving software process improvement,”

IEEE Software, vol. 19, no. 4, pp. 92–99, 2002.

[2] R. L. Glass, Facts and Fallacies of Software Engineering. Addison-Wesley

Professional, 2002.

[3] S. T. Acuna, N. Juristo, A. M. Moreno, and A. Mon, A Software Process

Model Handbook for Incorporating People’s Capabilities. Springer-Verlag,

2005.

[4] T. DeMarco and T. Lister, Peopleware: productive projects and teams.

Dorset House Publishing Company, 1999.

[5] Y. Dittrich, C. Floyd, and R. Klischewski, Social thinking-software prac-

tice. The MIT Press, 2002.

[6] M. Grechanik and D. E. Perry, “Analyzing software development as a

noncooperative game,” in IEE Seminar Digests, vol. 29, 2004.

[7] H. Van Vliet, “Editorial: Signs of a thriving journal,” Journal of Systems

and Software, vol. 86, no. 1, p. 1, 2013.

[8] R. Charette, “Why software fails,” IEEE Spectrum, vol. 42, no. 9, pp.

42–49, 2005.

[9] D. Hartmann, “Interview: Jim johnson of the standish group,” Infoqueue,

Aug, vol. 25, 2006.

197

www.manaraa.com

[10] C. Jones, Software Engineering Best Practices: Lessons from Successful

Projects in the Top Companies. McGraw-Hill Osborne Media, 2009.

[11] J. E. Tomayko and O. Hazzan, Human Aspects of Software Engineering.

Firewall Media, Dec. 2005.

[12] G. M. Weinberg, The psychology of computer programming. Van Nos-

trand Reinhold New York, 1971.

[13] H. Robinson and H. Sharp, “Collaboration, communication and coordi-

nation in agile software development practice,” in Collaborative Software

Engineering. Berlin Heidelberg: Springer, 2010, pp. 93–108.

[14] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grunbacher, Value-

based software engineering. Springer, 2005.

[15] StandishGroup, “The chaos report,” Available on-line at

http://www.projectsmart.co.uk/docs/chaos-report.pdf, 1995.

[16] B. Boehm, Software Engineering Economics. Prentice Hall, Nov. 1981.

[17] R. Selby, Software engineering: Barry W. Boehm’s lifetime contributions

to software development, management, and research. Wiley-IEEE Com-

puter Society Pr, 2007.

[18] K. Sullivan, P. Chalasani, and S. Jha, “Software design decisions as real

options,” University of Virginia, Tech. Rep., 1997.

[19] H. Erdogmus, B. Boehm, W. Harrison, D. Reifer, and K. Sullivan, “Soft-

ware engineering economics: background, current practices, and future

directions,” in Proceedings of the 24th International Conference on Soft-

ware Engineering. ACM, 2002, pp. 683–684.

[20] B. Boehm, “Software engineering economics,” IEEE Transactions on

Software Engineering, no. 1, pp. 4–21, 1984.

198

www.manaraa.com

[21] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove, “Improving

speed and productivity of software development: A global survey of soft-

ware developers,” IEEE Transactions on Software Engineering, vol. 22,

no. 11, pp. 875–885, 1996.

[22] B. Boehm, “Value-based software engineering: reinventing,” ACM SIG-

SOFT Software Engineering Notes, vol. 28, no. 2, p. 3, 2003.

[23] M. Halling, S. Biffl, and P. Grunbacher, “The role of valuation in

value-based software engineering,” in Proceedings of the 6 th Interna-

tional Workshop on Economics-Driven Software Engineering Research

(EDSER-6), 2004.

[24] S. T. Acuna, M. Gomez, and N. Juristo, “How do personality, team pro-

cesses and task characteristics relate to job satisfaction and software qual-

ity?” Information and Software Technology, vol. 51, no. 3, pp. 627 – 639,

2009.

[25] M. André, M. Baldoqúın, and S. Acuña, “Formal model for assigning

human resources to teams in software projects,” Information and Software

Technology, vol. 53, no. 3, pp. 259–275, 2011.

[26] C. Warhurst, I. Grugulis, and E. Keep, The skills that matter. Palgrave

Macmillan Houndmills, 2004.

[27] N. Hanna, Enabling Enterprise Transformation: Business and Grassroots

Innovation for the Knowledge Economy. Springer Verlag, 2009.

[28] F. Tsui, Managing software projects. Jones & Bartlett Learning, 2004.

[29] S. Ryan and R. V. O’Connor, “Development of a team measure for tacit

knowledge in software development teams,” Journal of Systems and Soft-

ware, vol. 82, no. 2, pp. 229–240, Feb. 2009.

[30] A. Kuper and J. Kuper, The social science encyclopedia. Rout-

ledge/Thoemms Press, 1985.

199

www.manaraa.com

[31] K. Leyton-Brown and Y. Shoham, Essentials of game theory: A concise

multidisciplinary introduction. Morgan & Claypool Publishers, 2008.

[32] N. Nisan, Algorithmic game theory. Cambridge Univ Pr, 2007.

[33] F. Deek, J. McHugh, and O. Eljabiri, Strategic software engineering: an

interdisciplinary approach. CRC Press, 2005.

[34] T. Dingsoyr, T. Dyba, and N. Moe, Agile Software Development: Current

Research and Future Directions. Springer Publishing Company, Jun.

2010.

[35] J. McGonigal, Reality is broken: Why games make us better and how they

can change the world. Penguin Pr, 2011.

[36] G. Matthews, I. J. Deary, and M. C. Whiteman, Personality Traits,

3rd ed. Cambridge University Press, Nov. 2009.

[37] D. Mayer and A. Stalnaker, “Selection and evaluation of computer

personnel-the research history of SIG/CPR,” in Proceedings of the 1968

23rd ACM national conference. ACM, 1968, pp. 657–670.

[38] N. Kerth, J. Coplien, and J. Weinberg, “Call for the rational use of per-

sonality indicators,” Computer, vol. 31, no. 1, pp. 146–147, Jan. 1998.

[39] P. Kline, The handbook of psychological testing. Psychology Press, 2000.

[40] E. Kaluzniacky, Managing psychological factors in information systems

work: An orientation to emotional intelligence. Information Science

Publishing, 2004.

[41] W. Humphrey, Managing the Software Process. Addison-Wesley, 1990.

[42] A. Fuggetta and A. L. Wolf, Software process. J. Wiley, 1996.

[43] I. Sommerville, Software Engineering (9th Edition). Addison Wesley,

Mar. 2009.

200

www.manaraa.com

[44] P. Feiler and W. Humphrey, “Software process development and enact-

ment: Concepts and definitions,” in Software Process, 1993. Continuous

Software Process Improvement, Second International Conference on the.

IEEE, 1993, pp. 28–40.

[45] H. Erdogmus, “Essentials of software process,” IEEE Software, vol. 25,

no. 4, pp. 4–7, 2008.

[46] ISO/IEC, Amendment to ISO/IEC 12207-2008 - Systems and software

engineering Software life cycle processes, 2008.

[47] R. V. O’Connor, “Human aspects of information technology develop-

ment,” International Journal of Technology, Policy and Management, vol.

Vol. 8, No. 1, 2008.

[48] S. Zahran, Software Process Improvement: Practical Guidelines for Busi-

ness Success. Addison Wesley, 1998.

[49] J. R. Persse, Process Improvement Essentials. O’Reilly Media, Inc., Sep.

2006.

[50] D. Wastell, “The Human Dimension of the Software Process,” Software

Process: Principles, Methodology, and Technology, pp. 165–199, 1999.

[51] A. Fuggetta, “Software process: a roadmap,” in ICSE ’00: Proceedings

of the Conference on The Future of Software Engineering. ACM, 2000,

pp. 25–34.

[52] B. Unhelkar, Practical Object Oriented Analysis. Thomson Publishing,

Mar. 2005.

[53] W. Royce, “Managing the development of large software systems,” in

Proceedings of IEEE Wescon, vol. 26, 1970.

[54] V. R. Basili and A. J. Turner, “Iterative enhancement: A practical tech-

nique for software development,” IEEE Transactions on Software Engi-

neering, vol. 4, pp. 390–396, 1975.

201

www.manaraa.com

[55] G. Pomberger, W. R. Bischofberger, D. Kolb, W. Pree, and H. Schlemm,

“Prototyping-Oriented software development - concepts and tools,” Struc-

tured Programming, vol. 12, no. 1, pp. 43–60, 1991.

[56] B. Boehm, “A spiral model of software development and enhancement,”

Computer, vol. 21, no. 5, pp. 61–72, 1988.

[57] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy, “Using

the WinWin spiral model: A case study,” Computer, vol. 31, no. 7, pp.

33–44, 1998.

[58] K. Beck, Extreme programming explained. Addison-Wesley, 2000.

[59] K. Schwaber, “Agile project management with scrum,” 2009.

[60] S. R. Palmer and J. M. Felsing, A practical guide to feature-driven devel-

opment. Prentice Hall PTR, Feb. 2002.

[61] B. Mutafelija and H. Stromberg, Process Improvement with CMMI v1. 2

and ISO Standards. Auerbach Publications, 2008.

[62] R. Pressman, Software engineering: a practitioner’s approach. McGraw-

Hill New York, 2010.

[63] B. Boehm and R. Ross, “Theory-W software project management princi-

ples and examples,” IEEE Transactions on Software Engineering, vol. 15,

no. 7, pp. 902–916, 1989.

[64] B. Boehm and P. Bose, “A collaborative spiral software process model

based on theory w,” 1994.

[65] B. Boehm, “Anchoring the software process,” vol. 13, no. 4, pp. 73–82,

1996.

[66] B. Hansen, J. Rose, and G. Tjornehoj, “Prescription, description, reflec-

tion: the shape of the software process improvement field,” International

Journal of Information Management, vol. 24, no. 6, pp. 457–472, Dec.

2004.

202

www.manaraa.com

[67] T. Dyba, T. Dingsyr, and N. B. Moe, Process Improvement in Practice: A

Handbook for It Companies (The Kluwer International Series in Software

Engineering, 9). Kluwer Academic Publishers, 2004.

[68] R. Kittler, M. Kocifaj, and S. Darula, Daylight science and daylighting

technology. Springer, 2011.

[69] W. Shewhart and W. Deming, Statistical method from the viewpoint of

quality control. Dover Publications, 1986.

[70] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI Guidlines for Pro-

cess Integration and Product Improvement. Addison-Wesley Longman

Publishing Co., Inc., 2003.

[71] W. S. Humphrey and M. I. Kellner, “Software process modeling: prin-

ciples of entity process models,” in ICSE ’89: Proceedings of the 11th

international conference on Software engineering. ACM, 1989, pp. 331–

342.

[72] D. Hoyle, ISO 9000 quality systems handbook. Butterworth-Heinemann,

2006.

[73] K. E. Emam, J. Drouin, W. Melo, and A. Dorling, SPICE: The Theory

and Practice of Software Process Improvement and Capability Determi-

nation. Wiley-IEEE Computer Society Pr, Oct. 1997.

[74] M. Paulk, B. Curtis, M. Chrissis, and C. Weber, “Capability matu-

rity model for software, version 1.1. software engineering institute,”

CMU/SEI-93-TR-24, DTIC Number ADA263403, Tech. Rep., 1993.

[75] SPICE, “Software process improvement and capability dEtermination,”

http://www.sqi.gu.edu.au/SPICE/, 2007.

[76] R. Singh, “International Standard ISO/IEC 12207 software life cycle pro-

cesses,” Software Process Improvement and Practice, vol. 2, no. 1, pp.

35–50, 1996.

203

www.manaraa.com

[77] S. Ambler, “Lessons in agility from internet-based development,” Soft-

ware, IEEE, vol. 19, no. 2, pp. 66–73, 2002.

[78] W. S. Humphrey, A Discipline for Software Engineering, 1st ed. Addison-

Wesley Professional, 1995.

[79] J. Favaro, “Managing requirements for business value,” IEEE Software,

pp. 15–17, 2002.

[80] A. Cockburn, Agile Software Development. Addison-Wesley Professional,

Dec. 2001.

[81] M. Fowler and J. Highsmith, “The agile manifesto,” Software Develop-

ment Magazine, vol. 9, no. 8, pp. 28–35, 2001.

[82] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for

the Perplexed, 1st ed. Addison-Wesley Professional, Aug. 2003.

[83] J. Highsmith and A. Cockburn, “Agile software development: the business

of innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2002.

[84] G. Miller, “The characteristics of agile software processes,” in Proceedings

of the 39th International Conference and Exhibition on Technology of

Object-Oriented Languages and Systems (TOOLS39). IEEE Computer

Society, 2001, p. 385.

[85] K. Bittner and I. Spence, Managing iterative software development

projects. Addison-Wesley, 2007.

[86] H. Coolican, Research methods and statistics in psychology. Hodder

Education, 2009.

[87] L. Blaxter, C. Hughes, and M. Tight, How to research. Open University

Press, 2010.

[88] L. Given, The Sage encyclopedia of qualitative research methods. Sage

Publications, 2008.

204

www.manaraa.com

[89] C. Goulding, Grounded theory: A practical guide for management, busi-

ness and market researchers. SAGE Publications, 2002.

[90] S. VanderStoep and D. Johnson, Research methods for everyday life:

Blending qualitative and quantitative approaches. Jossey-Bass, 2008,

vol. 24.

[91] R. Galliers, “Choosing appropriate information systems research ap-

proaches: a revised taxonomy,” 1992.

[92] R. Glass, I. Vessey, and V. Ramesh, “Research in software engineering: an

analysis of the literature,” Information and Software Technology, vol. 44,

no. 8, pp. 491–506, 2002.

[93] C. Dawson, Practical research methods: a user-friendly guide to mastering

research techniques and projects. How To Books Ltd, 2002.

[94] R. Stake, Qualitative Research: Studying How Things Work. The Guil-

ford Press, 2010.

[95] A. Holliday, Doing and writing qualitative research. Sage Publications,

2007.

[96] S. Hesse-Biber and P. Leavy, The practice of qualitative research. Sage

Publications, 2010.

[97] J. Maxwell, Qualitative research design: An interactive approach. Sage

Publications, 2004.

[98] D. Muijs, Doing quantitative research in education with SPSS. Sage

Publications, 2010.

[99] M. Balnaves and P. Caputi, Introduction to quantitative research methods:

An investigative approach. Sage Publications, 2001.

[100] J. Creswell, Research design: Qualitative, quantitative, and mixed meth-

ods approaches. Sage Publications, 2009.

205

www.manaraa.com

[101] P. Verschuren, “Case study as a research strategy: some ambiguities

and opportunities,” International Journal of Social Research Methodol-

ogy, vol. 6, no. 2, pp. 121–139, 2003.

[102] A. Bryman, “Integrating quantitative and qualitative research: how is it

done?” Qualitative research, vol. 6, no. 1, pp. 97–113, 2006.

[103] T. Cook and D. Campbell, “Quasi-experimental design and analysis issues

for field settings,” Chicago: Rand Mc-Nally College Publishing Co, 1979.

[104] N. Denzin, The research act: A theoretical introduction to sociological

methods. Aldine De Gruyter, 2009.

[105] T. Jick, “Mixing qualitative and quantitative methods: Triangulation in

action,” Administrative science quarterly, pp. 602–611, 1979.

[106] A. Tashakkori and C. Teddlie, Handbook of mixed methods in social &

behavioral research. Sage Publications, 2002.

[107] S. Andrew and E. Halcomb, Mixed Methods Research for Nursing and the

Health Sciences. Wiley-Blackwell, 2009.

[108] R. Panneerselvam, Research methodology. PHI Learning Pvt. Ltd., 2004.

[109] R. Thietart, Doing management research: a comprehensive guide. Sage

Publications, 2001.

[110] C. Seaman, “Qualitative methods in empirical studies of software engi-

neering,” IEEE Transactions on Software Engineering, vol. 25, no. 4, pp.

557–572, 1999.

[111] R. Hall, Applied social research: planning, designing and conducting real-

world research. Macmillan Education AU, 2008.

[112] H. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, and C. Reed,

“Research methods in computing: What are they, and how should we

teach them?” in ACM SIGCSE Bulletin, vol. 38, no. 4. ACM, 2006, pp.

96–114.

206

www.manaraa.com

[113] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical Software Engineering,

vol. 14, no. 2, pp. 131–164, 2009.

[114] J. Creswell, Research Design: Qualitative and Quantitative Approaches.

SAGE Publications, 1994.

[115] B. Berg, Qualitative research methods for the social sciences. Boston,

MA, USA: Pearson Education, 2004.

[116] B. Oates, Researching information systems and computing. Sage Publi-

cations, 2005.

[117] R. Yin, Case study research: Design and methods. Sage Publications,

2008, vol. 5.

[118] B. Kitchenham, “Evaluating software engineering methods and tool part

1: The evaluation context and evaluation methods,” ACM SIGSOFT

Software Engineering Notes, vol. 21, no. 1, pp. 11–14, 1996.

[119] D. Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical meth-

ods in software engineering research,” in Future of Software Engineering,

2007. FOSE’07. IEEE, 2007, pp. 358–378.

[120] D. Tomal, Action research for educators. Rowman & Littlefield Pub

Incorporated, 2010.

[121] S. Jackson, Research methods and statistics: A critical thinking approach.

Wadsworth Publishing Company, 2011.

[122] A. Pinsonneault and K. Kraemer, “Survey research methodology in man-

agement information systems: an assessment,” Journal of Management

Information Systems, vol. 10, no. 2, pp. 75–105, 1993.

[123] P. Biemer, L. Lyberg, and J. Wiley, Introduction to survey quality, ser.

Wiley Series in Survey Methodology. Wiley, 2003.

207

www.manaraa.com

[124] S. Presser, Methods for Testing and Evaluating Survey Questionnaires,

ser. Wiley Series in Survey Methodology. Wiley-Interscience, 2004.

[125] L. Hayduk, Structural equation modeling with LISREL: Essentials and

advances. Johns Hopkins Univ Pr, 1987.

[126] R. Kline, Principles and practice of structural equation modeling. The

Guilford Press, 2010.

[127] M. Lovric, International Encyclopedia of Statistical Science, 1st ed.

Springer, 2011.

[128] G. Hancock, Structural equation modeling: A second course. Information

Age Pub Inc, 2006, vol. 1.

[129] R. Schumacker and R. Lomax, A beginner’s guide to structural equation

modeling. Lawrence Erlbaum, 2004, vol. 1.

[130] P. Cuttance and R. Ecob, Structural modeling by example: Applications

in educational, sociological, and behavioral research. Cambridge Univ

Pr, 2009.

[131] A. Vieira, Interactive LISREL in Practice: Getting Started with a SIM-

PLIS Approach. Springer Verlag, 2011.

[132] T. Raykov and G. Marcoulides, A first course in structural equation mod-

eling. Lawrence Erlbaum, 2006.

[133] P. Barrett, “Structural equation modelling: Adjudging model fit,” Per-

sonality and Individual Differences, vol. 42, no. 5, pp. 815–824, 2007.

[134] G. Cheung and R. Rensvold, “Evaluating goodness-of-fit indexes for test-

ing measurement invariance,” Structural Equation Modeling, vol. 9, no. 2,

pp. 233–255, 2002.

[135] M. Browne and R. Cudeck, “Alternative ways of assessing model fit.”

Testing structural equation models (1993) Bollen, Kenneth A.; Long, J.

Scott. Newbury Park: Sage Publications., 1993.

208

www.manaraa.com

[136] R. Bagozzi and Y. Yi, “On the evaluation of structural equation models,”

Journal of the academy of marketing science, vol. 16, no. 1, pp. 74–94,

1988.

[137] J. Cote, R. Netemeyer, and P. Bentler, “Improving model fit by correlat-

ing errors,” Journal of Consumer Psychology, vol. 10, no. 1/2, pp. 87–88,

2001.

[138] R. Ping, “On assuring valid measures for theoretical models using survey

data,” Journal of Business Research, vol. 57, no. 2, pp. 125–141, 2004.

[139] J. Kalat, Introduction to psychology. Wadsworth Pub Co, 2010.

[140] B. Glaser and A. Strauss, The discovery of grounded theory: Strategies

for qualitative research. Chicago:Aldine, 1967.

[141] B. Glaser, Theoretical sensitivity: Advances in the methodology of

grounded theory. Sociology Press, 1978, vol. 2.

[142] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and

procedures for developing grounded theory. Sage Publications, 2008.

[143] J. Creswell, Qualitative inquiry and research design: Choosing among five

approaches. Sage Publications, 2012.

[144] A. Bryant and K. Charmaz, The Sage handbook of grounded theory. Sage

Publications, 2010.

[145] G. Coleman and R. O’Connor, “Using grounded theory to understand

software process improvement: A study of irish software product compa-

nies,” Information and Software Technology, vol. 49, no. 6, pp. 654–667,

Jun. 2007.

[146] G. Coleman and R. OConnor, “Investigating software process in practice:

A grounded theory perspective,” Journal of Systems and Software, vol. 81,

no. 5, pp. 772–784, 2008.

209

www.manaraa.com

[147] J. Smith, D. Wright, and G. Breakwell, Research methods in psychology.

SAGE Publications, 2012.

[148] B. Evans, C. Woodall, D. Marks, C. Willig, C. Sykes, and M. Murray,

Health psychology: Theory, research and practice. Sage Publications,

2005.

[149] D. Smith, Z. Huang, J. Preece, and A. Sears, “The effects of using a trian-

gulation approach of evaluation methodologies to examine the usability

of a university website,” Human Computer Interaction Development &

Management, p. 243, 2002.

[150] D. Howitt and D. Cramer, Introduction to research methods in psychology.

Prentice Hall, 2011.

[151] J. Kontio, L. Lehtola, and J. Bragge, “Using the focus group method

in software engineering: obtaining practitioner and user experiences,”

in Empirical Software Engineering, 2004. ISESE’04. Proceedings. 2004

International Symposium on. IEEE, 2004, pp. 271–280.

[152] J. Kontio, J. Bragge, and L. Lehtola, “The focus group method as an em-

pirical tool in software engineering,” Guide to Advanced Empirical Soft-

ware Engineering, pp. 93–116, 2008.

[153] K. Salen and E. Zimmerman, Rules of play: Game design fundamentals.

MIT press, 2003.

[154] E. Adams and J. Dormans, Game Mechanics: Advanced Game Design.

New Riders, 2012.

[155] C. Abt, Serious games. University Press of Amer, 1987.

[156] G. Zichermann and C. Cunningham, Gamification by Design: Implement-

ing Game Mechanics in Web and Mobile Apps. O’Reilly Media, 2011.

[157] S. Deterding, R. Khaled, L. Nacke, and D. Dixon, “Gamification: Toward

a definition,” in Proceedings of the 2011 Annual Conference Extended

210

www.manaraa.com

Abstracts on Human Factors in Computing Systems. ACM, New York,

2011.

[158] D. Flatla, C. Gutwin, L. Nacke, S. Bateman, and R. Mandryk, “Cali-

bration games: making calibration tasks enjoyable by adding motivating

game elements,” in Proceedings of the 24th annual ACM symposium on

User interface software and technology. ACM, 2011, pp. 403–412.

[159] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and D. Dixon, “Gamifica-

tion. using game-design elements in non-gaming contexts,” in Proceedings

of the 2011 annual conference extended abstracts on Human factors in

computing systems. ACM, 2011, pp. 2425–2428.

[160] K. Huotari and J. Hamari, “Gamification from the perspective of service

marketing,” in Proc. CHI 2011 Workshop Gamification, 2011.

[161] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design

elements to gamefulness: defining gamification,” in Proceedings of the

15th International Academic MindTrek Conference: Envisioning Future

Media Environments. New York, NY, USA: ACM, 2011, pp. 9–15.

[162] J. Hamari and V. Eranti, “Framework for designing and evaluating game

achievements,” Proc. DiGRA 2011: Think Design Play, 2011.

[163] F. Groh, “Gamification: State of the art definition and utilization,” In-

stitute of Media Informatics Ulm University, p. 39, 2012.

[164] J. Von Neumann, O. Morgenstern, A. Rubinstein, and H. Kuhn, Theory

of games and economic behavior. Princeton Univ Pr, 2007.

[165] D. Schwartz, Encyclopedia of knowledge management. IGI Global, 2006.

[166] M. J. Osborne and A. Rubinstein, A course in game theory. MIT Press,

1994.

[167] R. Gilles, The Cooperative Game Theory of Networks and Hierarchies.

Springer Verlag, 2010.

211

www.manaraa.com

[168] A. K. Dixit and S. Skeath, Games of Strategy. WW Norton New York,

Jun. 1999.

[169] K. G. Binmore, Playing for real. Oxford University Press US, 2007.

[170] B. Lagesse, “A Game-Theoretical model for task assignment in project

management,” in 2006 IEEE International Conference on Management

of Innovation and Technology, Singapore, 2006, pp. 678–680.

[171] A. Cockburn, “The end of software engineering and the start of economic-

cooperative gaming,” COMSIS, vol. 1, no. 1, pp. 1–32, 2004.

[172] A. Cockburn, Agile software development: the cooperative game.

Addison-Wesley, 2007.

[173] R. L. Baskerville, L. Levine, B. Ramesh, and J. Pries-Heje, “The high

speed balancing game: How software companies cope with internet

speed,” Scandinavian Journal of Information Systems, vol. 16, no. 1, pp.

11–54, 2004.

[174] S.-P. Ko, H.-K. Sung, and K.-W. Lee, “Study to secure reliability of

measurement data through application of game theory,” in Proceedings

of the 30th EUROMICRO Conference. Washington, DC, USA: IEEE

Computer Society, 2004, pp. 380–386.

[175] R. Holeman, “The software process improvement game,” in Software En-

gineering Education, ser. Lecture Notes in Computer Science, R. Ibrahim,

Ed. Springer, 1995, vol. 895, pp. 259–261.

[176] P. Ogland, “The game of software process improvement: Some reflections

on players, strategies and payoff,” Norsk konferanse for organisasjoners

bruk av informasjonsteknologi (NOKOBIT-16), pp. 209–223, November

2009.

[177] K. K. Vajja and P. TV, “Quality attribute game: a game theory based

techniquefor software architecture design,” in Proceeding of the 2nd an-

212

www.manaraa.com

nual conference on India software engineering conference. Pune, India:

ACM, 2009, pp. 133–134.

[178] V. Sazawal and N. Sudan, “Modeling software evolution with game the-

ory,” Trustworthy Software Development Processes, vol. 5543, pp. 354–

365, 2009.

[179] G. Bavota, R. Oliveto, A. De Lucia, G. Antoniol, and Y. Gueheneuc,

“Playing with refactoring: Identifying extract class opportunities through

game theory,” in Software Maintenance (ICSM), 2010 IEEE International

Conference on. IEEE, pp. 1–5.

[180] O. Hazzan and Y. Dubinsky, “Social perspective of software development

methods: The case of the prisoner dilemma and extreme programming,”

in Extreme Programming and Agile Processes in Software Engineering.

Springer, 2005, pp. 74–81.

[181] L. Feijs, “Prisoner dilemma in software testing,” Computer Science Re-

ports, vol. 1, pp. 65–80, 2001.

[182] N. V. Oza, “Game theory perspectives on client: vendor relationships in

offshore software outsourcing,” in Proceedings of the 2006 international

workshop on Economics driven software engineering research, vol. 27,

no. 27. New York, NY, USA: ACM, 2006, pp. 49–54.

[183] M. Klein, G. Moreno, D. Parkes, and K. Wallnau, “Designing for in-

centives: better information sharing for better software engineering,” in

Proceedings of the FSE/SDP workshop on Future of software engineering

research, ser. FoSER ’10. ACM, 2010, pp. 195–200.

[184] L. Hurwicz and S. Reiter, Designing economic mechanisms. Cambridge

Univ. Pr., May 2006.

[185] F. Hayek, “The use of knowledge in society,” American Economic Review,

vol. 35, no. 4, pp. 519–530, 1945.

213

www.manaraa.com

[186] J. C. Harsanyi, “Games with incomplete information played by

”Bayesian” players, I-III: part i. the basic model,” Management Science,

vol. 50, no. 12 supplement, pp. 1804–1817, Dec. 2004.

[187] X. Zhao, F. Fang, and A. Whinston, “An economic mechanism for better

internet security,” Decision Support Systems, vol. 45, no. 4, pp. 811–821,

2008.

[188] T. Stef-Praun and V. Rego, “Ws-auction: Mechanism design for aweb

services market,” in Distributed Computing Systems Workshops, 2006.

ICDCS Workshops 2006. 26th IEEE International Conference on. IEEE,

2006, pp. 41–41.

[189] E. Friedman and D. Parkes, “Pricing wifi at starbucks: issues in online

mechanism design,” in Proceedings of the 4th ACM conference on Elec-

tronic commerce. ACM, 2003, pp. 240–241.

[190] H. Ziv, D. Richardson, and R. Klosch, “The uncertainty principle in soft-

ware engineering,” in Proceedings of the 19th International Conference on

Software Engineering (ICSE’97), 1997.

[191] H. Barki and J. Hartwick, “Interpersonal conflict and its management in

information system development,” Mis Quarterly, p. 195â“228, 2001.

[192] X. Zhang, J. S. Dhaliwal, M. L. Gillenson, and G. Moeller, “Sources of

conflict between developers and testers in software development,” AMCIS

2008 Proceedings, p. 313, 2008.

[193] R. H. Rasch and H. L. Tosi, “Factors affecting software developers’ per-

formance: An integrated approach,” MIS Quarterly, vol. 16, no. 3, pp.

395–413, 1992.

[194] D. Narayan and M. Cassidy, “A dimensional approach to measuring social

capital: development and validation of a social capital inventory,” Current

Sociology, vol. 49, no. 2, p. 59, 2001.

214

www.manaraa.com

[195] N. Madhavji, M. Lehman, D. Perry, and J. Ramil, Software evolution and

feedback. Wiley Online Library, 2006.

[196] J. Moore, The death of competition: leadership and strategy in the age of

business ecosystems. HarperBusiness New York, 1996.

[197] E. Mitleton-Kelly, Complex systems and evolutionary perspectives on or-

ganisations. Emerald Group Publishing, Sep. 2003.

[198] C. Shapiro and H. Varian, Information rules: a strategic guide to the

network economy. Harvard Business Press, 1999.

[199] S. Shariq, “Sense making and artifacts: an exploration into the role of

tools in knowledge management,” Journal of Knowledge Management,

vol. 2, no. 2, pp. 10–19, 1998.

[200] C. Baldwin and K. Clark, Design rules: The power of modularity. The

MIT Press, 2000.

[201] E. W. Dijkstra, “On the role of scientific thought,” in Selected Writings on

Computing: A Personal Perspective. Springer-Verlag, 1982, pp. 60–66.

[202] M. Cluts, “The evolution of artifacts in cooperative work: constructing

meaning through activity,” in Proceedings of the 2003 international ACM

SIGGROUP conference on Supporting group work. ACM, 2003, pp. 144–

152.

[203] S. Misterek, K. Dooley, and J. Anderson, “Productivity as a performance

measure,” International Journal of Operations & Production Manage-

ment, vol. 12, no. 1, pp. 29–45, 1992.

[204] J. Prokopenko, Productivity management: a practical handbook. Inter-

national Labour Office, 1987.

[205] S. Tangen, “Demystifying productivity and performance,” International

Journal of Productivity and performance management, vol. 54, no. 1, pp.

34–46, 2005.

215

www.manaraa.com

[206] E. Brynjolfsson, “The productivity paradox of information technology,”

Communications of the ACM, vol. 36, no. 12, pp. 66–77, 1993.

[207] D. Sink, T. Tuttle, and S. Shin, Planning and measurement in your or-

ganization of the future. Industrial engineering and management Press

Norcross, Georgia, 1989.

[208] M. Jackson and P. Petersson, “Productivity–an overall measure of com-

petitiveness,” in Proceedings of the Second Workshop on Intelligent Man-

ufacturing Systems, Leuven, Belgium, 1999, pp. 573–81.

[209] M. Chemuturi, Software Estimation Best Practices, Tools & Techniques:

A Complete Guide for Software Project Estimators. J. Ross Publishing,

2009.

[210] M. Zelkowitz, Advances in Computers: Highly Dependable Software. Gulf

Professional Publishing, 2003.

[211] S. Kan, Metrics and Models in Software Quality Engineering, Second Edi-

tion. Prentice Hall, 2003.

[212] A. Albrecht, “Measuring application development productivity,” in Pro-

ceedings of the Joint SHARE/GUIDE/IBM Application Development

Symposium, vol. 10. SHARE Inc. and GUIDE International Corp. Mon-

terey, CA, 1979, pp. 83–92.

[213] K. Maxwell and P. Forselius, “Benchmarking software development pro-

ductivity,” IEEE Software, vol. 17, no. 1, pp. 80–88, 2000.

[214] M. Bundschuh and C. Dekkers, The IT measurement compendium: es-

timating and benchmarking success with functional size measurement.

Springer, 2008.

[215] S. Tangen, “Understanding the concept of productivity,” in Proceedings

of the 7th Asia-Pacific Industrial Engineering and Management Systems

Conference, Taipei, 2002, pp. 18–20.

216

www.manaraa.com

[216] C. Dale and H. Van Der Zee, “Software productivity metrics: who needs

them?” Information and Software Technology, vol. 34, no. 11, pp. 731–

738, 1992.

[217] A. Trendowicz and J. Munch, “Factors influencing software develop-

ment productivitystate-of-the-art and industrial experiences,” Advances

in computers, vol. 77, pp. 185–241, 2009.

[218] C. Jones, Estimating Software Costs: Bringing Realism to Estimating.

McGraw-Hill Companies, 2007.

[219] T. K. Abdel-Hamid, “The slippery path to productivity improvement,”

IEEE Software, vol. 13, no. 4, pp. 43–52, July 1996.

[220] T. Gilb and S. Finzi, Principles of software engineering management.

Addison-Wesley Wokingham, UK, 1988.

[221] W. Scacchi, “Understanding software productivity,” Software Engineer-

ing and Knowledge Engineering: Trends for the Next Decade, vol. 4, pp.

273–316, 1995.

[222] P. Hantos and M. Gisbert, “Identifying software productivity improve-

ment approaches and risks: construction industry case study,” IEEE

Software, vol. 17, no. 1, p. 56, 2000.

[223] I. D. Steiner, Group process and productivity. Academic Press New York,

1972.

[224] T. K. Abdel-Hamid and S. E. Madnick, “Lessons learned from modeling

the dynamics of software development,” Communications of the ACM,

vol. 32, no. 12, pp. 1426–1438, Dec. 1989.

[225] B. Boehm, “Improving software productivity,” Computer, vol. 20, no. 9,

pp. 43 –57, sept. 1987.

[226] S. Pfleeger, “Model of software effort and productivity,” Information and

Software Technology, vol. 33, no. 3, pp. 224–231, 1991.

217

www.manaraa.com

[227] K. Maxwell, Applied statistics for software managers. Prentice Hall PTR,

2002.

[228] S. C. d. B. Sampaio, E. A. Barros, G. S. d. Aquino Junior, M. J. C. e. Silva,

and S. R. d. L. Meira, “A review of productivity factors and strategies

on software development,” Proceedings of the 2010 Fifth International

Conference on Software Engineering Advances, pp. 196–204, 2010.

[229] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design

process for large systems,” Communications of the ACM, vol. 31, no. 11,

pp. 1268–1287, 1988.

[230] W. Scacchi, “Understanding software productivity: towards a knowledge-

based approach,” International Journal of Software Engineering and

Knowledge Engineering, vol. 1, no. 3, pp. 293–321, 1991.

[231] W. Yu, D. Smith, and S. Huang, “Software productivity measurements,”

in Computer Software and Applications Conference, 1991. COMP-

SAC’91., Proceedings of the Fifteenth Annual International. IEEE, 1991,

pp. 558–564.

[232] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Motivation

in software engineering: A systematic literature review,” Information and

Software Technology, vol. 50, no. 9-10, pp. 860–878, Aug. 2008.

[233] T. Hall, N. Baddoo, S. Beecham, H. Robinson, and H. Sharp, “A sys-

tematic review of theory use in studies investigating the motivations

of software engineers,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 18, no. 3, pp. 1–29, 2009.

[234] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson, “Models of

motivation in software engineering,” Information and Software Technol-

ogy, vol. 51, no. 1, pp. 219–233, 2009.

218

www.manaraa.com

[235] B. Boehm and P. Papaccio, “Understanding and controlling software

costs,” IEEE Transactions on Software Engineering, vol. 14, no. 10, pp.

1462–1477, 1988.

[236] S. Faraj and L. Sproull, “Coordinating expertise in software development

teams,” Management Science, vol. 46, no. 12, pp. 1554–1568, 2000.

[237] V. Basili, L. Briand, and W. Melo, “How reuse influences productivity in

object-oriented systems,” Communications of the ACM, vol. 39, no. 10,

pp. 104–116, 1996.

[238] B. Boehm, “Managing software productivity and reuse,” Computer,

vol. 32, no. 9, pp. 111–113, 2002.

[239] D. Simmons, Software Organization Productivity. Software Productivity

Improvement Laboratory,Department of Computer Science Texas A & M

University, 2007.

[240] Z. Jiang, P. Naudé, and C. Comstock, “An investigation on the variation

of software development productivity,” International Journal of Com-

puter, Information, and Systems Sciences, and Engineering, vol. 1, no. 2,

pp. 72–81, 2007.

[241] Z. Jiang and C. Comstock, “The factors significant to software develop-

ment productivity,” in Proceedings of World Academy of Science, Engi-

neering and Technology, vol. 21. Citeseer, 2007, pp. 160–164.

[242] I. Chiang and V. Mookerjee, “Improving software team productivity,”

Communications of the ACM, vol. 47, no. 5, pp. 89–93, 2004.

[243] C. Behrens, “Measuring the productivity of computer systems develop-

ment activities with function points,” IEEE Transactions on Software

Engineering, vol. SE-9, no. 6, pp. 648–652, 1983.

[244] S. Wagner and M. Ruhe, “A structured review of productivity factors

in software development,” Institut fur Informatik-Technische Universitat

Munchen, Tech. Rep. Technical Report TUMI0832, 2008.

219

www.manaraa.com

[245] M. Yilmaz and R. V. O’Connor, “Social capital as a determinant factor of

software development productivity: An empirical study using structural

equation modeling,” International Journal of Human Capital and Infor-

mation Technology Professionals (IJHCITP), vol. 3, no. 2, pp. 40–62,

2012.

[246] B. Boehm and K. J. Sullivan, “Software economics: a roadmap,” in Pro-

ceedings of the Conference on The Future of Software Engineering. Lim-

erick, Ireland: ACM, 2000, pp. 319–343.

[247] W. Welfe, Knowledge-based economies: models and methods. Peter Lang

Publishing, 2009.

[248] K. Marx, Capital: a critical analysis of capitalist production. Appleton,

1889.

[249] N. Lin, Social capital: A theory of social structure and action. Cambridge

Univ Press, 2002.

[250] P. Bordieu, “The forms of capital,” Handbook of Theory and Research for

the Sociology of Education, vol. 241, pp. 241–258, 1986.

[251] A. Portes, “Social capital: its origins and applications in modern sociol-

ogy,” Annual review of sociology, vol. 24, no. 1, pp. 1–24, 1998.

[252] F. Fukuyama, Trust: The social virtues and the creation of prosperity.

Free Pr, 1996.

[253] N. Christakis and J. Fowler, Connected: The surprising power of our so-

cial networks and how they shape our lives. Little, Brown and Company,

2009.

[254] J. Coleman, Foundations of social theory. Belknap Press, 1994.

[255] J. Coleman, “Social capital in the creation of human capital,” The Amer-

ican Journal of Sociology, vol. 94, no. 1, pp. 95–120, 1988.

220

www.manaraa.com

[256] G. Homans, “Social behavior as exchange,” American journal of sociology,

vol. 63, no. 6, pp. 597–606, 1958.

[257] P. Bourdieu and L. Wacquant, An invitation to reflexive sociology. Uni-

versity of Chicago Press, 1992.

[258] L. Barnett, “Social Productivity, Law, and the Regulation of Conflicts

of Interest in the Investment Industry,” Cardozo Public Law, Policy and

Ethics Journal, vol. 3, p. 793, 2004.

[259] T. Stober and U. Hansmann, Agile Software Development: Best Practices

for Large Software Development Projects. Springer-Verlag, 2009.

[260] S. Koh and S. Maguire, Information and Communication Technologies

Management in Turbulent Business Environments, ser. Premier Reference

Source. Information Science Reference, 2009.

[261] O. Hazzan and Y. Dubinsky, Agile Software Engineering, ser. Undergrad-

uate Topics in Computer Science. Springer, 2008.

[262] D. Anderson, Agile management for software engineering: applying the

theory of constraints for business results, ser. The Coad series. Prentice

Hall PTR, 2004.

[263] A. Kelly, Changing software development: Learning to become agile. Wi-

ley, 2008.

[264] D. Churchville, Agile Thinking: Leading successful software projects and

teams. ExtremePlanner Software, Dec. 2008.

[265] K. Krippendorff, Content analysis: An introduction to its methodology.

Sage Publications, 2004.

[266] B. Glaser and A. Strauss, The discovery of grounded theory: Strategies

for qualitative research. Aldine Transaction, 2007.

[267] E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology &

Policy, vol. 12, no. 3, pp. 23–49, 1999.

221

www.manaraa.com

[268] S. Sheard, “The value of Twelve systems engineering roles,” in Proceedings

of INCOSE. Citeseer, 1996.

[269] S. Sheard, “Twelve systems engineering roles,” in Proceedings of INCOSE.

Citeseer, 1996.

[270] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile software

development methods: Review and Analysis. Technical Research Centre

of Finland, 2002, vol. VTT Publications 478, no. 3.

[271] B. Curtis, W. E. Hefley, and S. A. Miller, The People Capability Matu-

rity Model(R): Guidelines for Improving the Workforce. Addison-Wesley

Professional, Dec. 2001.

[272] B. Curtis, W. Hefley, and S. Miller, People CMM: A Framework for Hu-

man Capital Management. Addison-Wesley Professional, 2009.

[273] A. P. Association, Diagnostic and Statistical Manual of Mental Disorders

DSM-IV-TR Fourth Edition, 4th ed. Amer Psychiatric Pub, Jun. 2000.

[274] C. Jung, H. Baynes, and R. Hull, Psychological types. Routledge, 1991.

[275] I. Myers, M. McCaulley, and R. Most, Manual: A guide to the develop-

ment and use of the Myers-Briggs Type Indicator, 1985.

[276] I. Myers, M. McCaulley, N. Quenk, and A. Hammer, MBTI manual.

Consulting Psychologists Press, 1999.

[277] D. Pittenger, “Measuring the mbti and coming up short,” Journal of

Career Planning and Employment, vol. 54, no. 1, pp. 48–52, 1993.

[278] N. Quenk, Essentials of Myers-Briggs type indicator assessment. Wiley,

2009, vol. 66.

[279] D. Wilde, Teamology: the construction and organization of effective

teams. Springer Verlag, 2008, vol. 10.

222

www.manaraa.com

[280] S. Cruz, F. da Silva, C. Monteiro, P. Santos, and I. Rossilei, “Personality

in software engineering: Preliminary findings from a systematic literature

review,” in Evaluation & Assessment in Software Engineering (EASE

2011), 15th Annual Conference on. IET, 2011, pp. 1–10.

[281] D. Keirsey and M. Bates, Please understand me: Character & tempera-

ment types. Prometheus Nemesis Michigan, 1984.

[282] K. White, “A preliminary investigation of information systems team

structures,” Information & Management, vol. 7, no. 6, pp. 331–335, 1984.

[283] K. Kaiser and R. Bostrom, “Personality characteristics of mis project

teams: An empirical study and action-research design,” MIS Quarterly,

vol. 6, no. 4, pp. 43–60, 1982.

[284] R. Rutherfoord, “Using personality inventories to help form teams for

software engineering class projects,” ACM SIGCSE Bulletin, vol. 33,

no. 3, pp. 73–76, 2001.

[285] J. Karn and T. Cowling, “A follow up study of the effect of personal-

ity on the performance of software engineering teams,” in Proceedings

of the 2006 ACM/IEEE international symposium on Empirical software

engineering. ACM, 2006, pp. 232–241.

[286] P. Sfetsos, I. Stamelos, L. Angelis, and I. Deligiannis, “An experimental

investigation of personality types impact on pair effectiveness in pair pro-

gramming,” Empirical Software Engineering, vol. 14, no. 2, pp. 187–226,

2009.

[287] A. Dick and B. Zarnett, “Paired programming and personality traits,”

XP2002, Italy, 2002.

[288] J. Karn, S. Syed-Abdullah, A. Cowling, and M. Holcombe, “A study into

the effects of personality type and methodology on cohesion in software

engineering teams,” Behaviour & Information Technology, vol. 26, no. 2,

pp. 99–111, 2007.

223

www.manaraa.com

[289] C. Bush and L. Schkade, “In search of the perfect programmer.” Data-

mation, vol. 31, no. 6, pp. 128–132, 1985.

[290] E. Buie, “Psychological type and job satisfaction in scientific computer

professionals,” Journal of Psychological Type, vol. 15, pp. 50–53, 1988.

[291] D. Smith, “The personality of the systems analyst: an investigation,”

ACM SIGCPR Computer Personnel, vol. 12, no. 2, pp. 12–14, 1989.

[292] R. Turley and J. Bieman, “Competencies of exceptional and nonexcep-

tional software engineers,” Journal of Systems and Software, vol. 28, no. 1,

pp. 19–38, 1995.

[293] L. Hardiman, “Personality types and software engineers,” Computer,

vol. 30, no. 10, pp. 10–10, 1997.

[294] L. Capretz, “Personality types in software engineering,” International

Journal of Human-Computer Studies, vol. 58, no. 2, pp. 207–214, 2003.

[295] R. Sach, M. Petre, and H. Sharp, “The use of mbti in software engineer-

ing,” in 22nd Annual Psychology of Programming Interest Group 2010,

September 2010.

[296] A. Da Cunha and D. Greathead, “Does personality matter?: an analysis

of code-review ability,” Communications of the ACM, vol. 50, no. 5, pp.

109–112, 2007.

[297] N. Gorla and Y. Lam, “Who should work with whom?: building effective

software project teams,” Communications of the ACM, vol. 47, no. 6, pp.

79–82, 2004.

[298] D. Varona, L. Capretz, and Y. Piñero, “Personality types of cuban soft-

ware developers,” Global Journal of Engineering Education, vol. 13, no. 2,

2011.

[299] D. Varona, L. F. Capretz, Y. Piñero, and A. Raza, “Evolution of soft-

ware engineers’ personality profile,” ACM SIGSOFT Software Engineer-

ing Notes, vol. 37, no. 1, pp. 1–5, Jan. 2012.

224

www.manaraa.com

[300] L. Capretz, “Software development and personality traits,” 2012, invited

talk, Tenth International Conference on Computer Applications (ICCA

2012), the University of Computer Studies, in Yangon Myanmar.

[301] L. Capretz and F. Ahmed, “Why do we need personality diversity in soft-

ware engineering?” ACM SIGSOFT Software Engineering Notes, vol. 35,

no. 2, pp. 1–11, 2010.

[302] F. Ahmed, L. Capretz, and P. Campbell, “Evaluating the demand for soft

skills in software development,” IT Professional, vol. 14, no. 1, pp. 44–49,

2012.

[303] J. Karn and A. Cowling, “Using ethnographic methods to carry out hu-

man factors research in software engineering,” Behavior research methods,

vol. 38, no. 3, pp. 495–503, 2006.

[304] H. Goldsmith, A. Buss, R. Plomin, M. Rothbart, A. Thomas, S. Chess,

R. Hinde, and R. McCall, “Roundtable: What is temperament? four

approaches,” Child development, pp. 505–529, 1987.

[305] G. Allport, “Pattern and growth in personality.” 1961.

[306] D. Joyce, Essentials of temperament assessment. Wiley, 2010, vol. 71.

[307] D. DeCarlo, eXtreme project management: Using leadership, principles,

and tools to deliver value in the face of volatility. Jossey-Bass, 2004.

[308] E. Scerri, The periodic table: its story and its significance. Oxford Uni-

versity Press, USA, 2006.

[309] D. Bradbary and D. Garrett, Herding chickens: innovative techniques for

project management. Jossey-Bass, 2005.

[310] R. Krueger and M. Casey, Focus groups: A practical guide for applied

research. Sage Publications, 2009.

[311] K. Joreskog and D. Sorbom, LISREL 8: users reference guide. Lincol-

nwood, IL: Scientific Software International. Inc, 2001.

225

www.manaraa.com

[312] L. Cronbach, “Coefficient alpha and the internal structure of tests,” Psy-

chometrika, vol. 16, no. 3, pp. 297–334, 1951.

[313] A. Lehman, JMP for basic univariate and multivariate statistics: a step-

by-step guide. SAS Publishing, 2005.

[314] P. Kline, A handbook of test construction: Introduction to psychometric

design. Methuen, 1986.

[315] A. Field, Discovering statistics using SPSS. SAGE publications, 2009.

[316] D. Rodŕıguez, M. Sicilia, E. Garćıa, and R. Harrison, “Empirical find-

ings on team size and productivity in software development,” Journal of

Systems and Software, 2011.

[317] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering,

Anniversary Edition (2nd Edition). Addison-Wesley Professional, 1995.

[318] T. Abdel-Hamid and S. E. Madnick, Software project dynamics: an inte-

grated approach. Prentice Hall Englewood Cliffs, NJ, 1991.

[319] L. Putnam, “A general empirical solution to the macro software sizing

and estimating problem,” IEEE Transactions on Software Engineering,

no. 4, pp. 345–361, 1978.

[320] R. Daft and D. Marcic, Understanding management. South-Western

Pub, 2006.

[321] M. Hoegl, “Smaller teams–better teamwork: How to keep project teams

small,” Business Horizons, vol. 48, no. 3, pp. 209–214, 2005.

[322] M. Hansen, W. Hurwitz, L. Pritzker, and U. S. B. of the Census, The

estimation and interpretation of gross differences and the simple response

variance. Bureau of the Census, 1963.

[323] J. Cohen, “A coefficient of agreement for nominal scales,” Educational

and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

226

www.manaraa.com

[324] R. Basu, Implementing quality: a practical guide to tools and techniques:

enabling the power of operational excellence. Cengage Learning Business

Press, 2004.

[325] R. Harris, Information graphics: A comprehensive illustrated reference.

Oxford University Press, USA, 2000.

[326] N. Moe, T. Dingsøyr, and E. Røyrvik, “Putting agile teamwork to the

test–an preliminary instrument for empirically assessing and improving

agile software development,” Agile Processes in Software Engineering and

Extreme Programming, pp. 114–123, 2009.

[327] M. Ringstad, T. Dingsøyr, and N. Brede Moe, “Agile process improve-

ment: Diagnosis and planning to improve teamwork,” Systems, Software

and Service Process Improvement, vol. 172, no. 1, pp. 167–178, 2011.

[328] W. Humphrey, TSP: Leading a Development Team. Addison-Wesley

Professional, 2005.

[329] L. Gottschalk, Content analysis of verbal behavior: New findings and

clinical applications. Lawrence Erlbaum Associates, Inc., 1995.

[330] M. Yilmaz and R. O’Connor, “An empirical investigation into social pro-

ductivity of a software process: An approach by using the structural equa-

tion modeling,” in Proceedings of the 18th European System and Software

Process Improvement and Innovation Conference (EuroSPI 2011), vol.

172. Springer Berlin Heidelberg, 2011, pp. 155–166.

[331] L. Foulds, M. Quaddus, and M. West, “Structural equation modelling

of large-scale information system application development productivity:

the Hong Kong experience,” in Computer and Information Science, 2007.

ICIS 2007. 6th IEEE/ACIS International Conference on. IEEE, 2007,

pp. 724–731.

[332] S. Ng, Y. Wong, and J. Wong, “A structural equation model of feasibility

evaluation and project success for public–private partnerships in hong

227

www.manaraa.com

kong,” Engineering Management, IEEE Transactions on, vol. 57, no. 2,

pp. 310–322, 2010.

[333] L. Capretz and F. Ahmed, “Making sense of software development and

personality types,” IT Professional, vol. 12, no. 1, pp. 6–13, 2010.

[334] O. Mazni, S. Syed-Abdullah, and N. Hussin, “Analyzing personality types

to predict team performance,” in Science and Social Research (CSSR),

2010 International Conference on. IEEE, 2010, pp. 624–628.

[335] T. Lewis and W. Smith, “Building software engineering teams that work:

The impact of dominance on group conflict and performance outcomes,”

in Frontiers in Education Conference, 2008. FIE 2008. 38th Annual.

IEEE, 2008, pp. S3H–1.

[336] Z. Su-li and X. Ke-fan, “Research on entrepreneurial team members’ per-

sonality traits influence on group risk decision-making,” in Management

Science and Engineering (ICMSE), 2010 International Conference on.

IEEE, 2010, pp. 937–942.

[337] M. Conway, “How do committees invent,” Datamation, vol. 14, no. 4, pp.

28–31, 1968.

[338] M. Rothstein and R. Goffin, “The use of personality measures in person-

nel selection: What does current research support?” Human Resource

Management Review, vol. 16, no. 2, pp. 155–180, 2006.

228

www.manaraa.com

Part VI

Appendices

229

www.manaraa.com

Appendix A

Survey Instrument

230

www.manaraa.com

A Survey for identifying the factors affecting productivity

May I firstly introduce myself: My name is Murat Yilmaz. I am a doctoral researcher at Lero
- The Irish Software Engineering Research Center at Dublin City University, Ireland. Over the
last two years, as a part of my PhD project, I am working on identifying several critical factors
that are affecting the productivity of software development organizations.

To achieve precise results with this research, your help would be greatly appreciated for ana-
lyzing the identified factors in detail via our questionnaire below. The same questionnaire will
be used for all participants, which will be treated in strict confidentiality, therefore there is no
requirement for names or other personal details. Your responses will not be shared with third
parties.Please take a few minutes to fill out our survey. It will 30 minutes to complate. Please
carefully read the following statements. Indicate your agreement or lack of agreement with each
of the statements. Should you need any further information, please do not hesitate to contact
me at murat.yilmaz@computing.dcu.ie, and visit my web page:
http://www.computing.dcu.ie/˜myilmaz/academic/index.html.

Please state your gender:

� Male
� Female

Since graduating, how many years how many years have you spent working in the Software
Development Industry.

. .

Please state your current role/job title (e.g. software developer, software tester, etc.):

. .

How long have you been served in your current position?

. .

Software Productivity Factors of Software Development

Software development productivity is a success measure of software development. It is a ratio
between the functional value of software artifacts that are produced to the workforce and costs
of producing it. The goal of this survey is to understand your opinion on several factors that
may affect productivity of software development.

Motivation

1. The level of an individual’s motivation has a significant affect on the productivity
of software development.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

2. The level of interest that people have for their assigned tasks directly affects the
productivity of software development.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Management Quality, e.g. process, development tools,
programming languages

3. The productivity of software development is affected by the choice of develop-
ment process or methodology (e.g. waterfall, iterative, agile, etc.).

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

4. The choice of programming language has a significant impact on software devel-
opment productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

5. The tools and technologies used for software development have a major effect on
software development productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

Complexity Issues, e.g. task, process, product

6. Working on complex and challenging tasks as opposed to routine tasks will im-
prove software development productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

7. In a development of large, complex structured programming projects, it is more
difficult to get an accurate assessment of software development productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

8. The number of tasks that are identified in a software project and their complex
connections has a major impact on software development productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Work Environment

9. The physical layout, furnishings and office support services are important project
resources that affect software development productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

Re-usability

10. As opposed to writing every line of code starting from scratch, it would be
better for a software project to use some off-the-self product or a library to
improve software development productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Requirements Stability

11. The ability of an organization to stabilize customers’ requirements (i.e. expec-
tations) has a significant affect on productivity of software development.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

12. The changes in requirements of a project could have a significant impact on
software development productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Team Issues, e.g. size, organization, location

13. Software development productivity is affected by team size.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

14. In order to improve software development productivity, the team members must
frequently communicate verbally with each other.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

15. From a software development productivity perspective, it is important that a
team member should have an ability to interpret non-verbal communications
such as facial expression, eye contact, etc.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

16. Software development productivity is not be affected by having team members
in different physical locations.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

17. An ideal software team should be a self-sufficient group which means its mem-
bers are able to solve their problems that occur during development.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

18. How many members are in your immediate development team?

Members

19. In your view, what proportion of your team members are operating at high
levels of productivity?

Members

www.manaraa.com

Social Productivity Factors

Social productivity involves targeting the quality of social interactions in order to bring
about productivity improvements. Furthermore, by designing a better communication
and social structure (i.e. mechanism) for software organization, we aim to improve the
social structure and welfare of a software organization so as to improve the organizational
outputs, i.e. Software production.

Team Leader, e.g. conflicts, reputation

20. A conflict between two members of a team should be addressed by a team
leader.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

21. To improve team performance, a team leader’s skills are an important factor.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Social Interaction, life, communication

22. A member of a team should communicate with every other member of a team.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

23. I would like to have a social life with my teammates outside of the workplace.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

Information Awareness

24. In a well functioning team setting, I should know what everyone is doing, and
everyone should know what I am doing.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

25. A collective team memory involves awareness of what actions will have a po-
tential impact on goals and objectives of a team as a whole.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Team Cohesion

26. Individual team members should be united in the service of the team goals.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

27. A team’s ability to work together depends on how its members enjoy each
others company.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

Fairness

28. I lose all sense of fairness, if I see some other members of my team are doing
less work than me.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

29. I am confident that my teammates are likely to be successful to achieve their
tasks when they are assigned a fair allocation of the work.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Frequent Meetings

30. A team should meet on very regular basis to be informed about each others
progress.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Social Trust

31. I am aware of my reliance on my teammates.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

Social Capital Factors

Social capital is an important network-based element that provides insight to individuals
for maximizing their productivity by valuing tangible resources in a social setting such
as software development. Therefore, we argue that it is vitally important to identify
and correlate social determinants that are potentially affecting the software development
productivity.

Neighborhood Connections

32. I think the people around me (i.e. my social connections) make a significant
impact on my career.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

33. In the past, I have secured new jobs by using my network of social connections.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Group Characteristics

34. The people that I socially connected to have a significant impact on my career
success.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

35. Gathering different personality types of people together is essential to accom-
plish team objectives.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

Generalized Norms

36. I can improve the value of my social relationships with colleagues, if I behave
in a manner that respects the accepted social norms.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Togetherness

37. I add people to my social circles (networks) regarding to their potential benefits
to me.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Everyday sociability

38. I think people with extra social skills are more collaborative than the ones with
less social skills.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Volunteerism

39. I prefer to volunteer for extra work so as to extend my network of connections.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

40. Volunteering can help individuals to better understand different social types of
people.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Trust

41. The ability of people to trust each other and maintain cooperative relationships
is the result of their social experiences.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Complementary Questions

42. A proper alignment between the goals of individuals and organizational objec-
tives has a significant impact on the productivity of software development.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

43. While setting up software teams, it is important to consider a method based
on individuals personality types rather than using an ad-hoc method.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

www.manaraa.com

44. Revealing the position of a team member in a social structure together with
investigation of his or her personality type, will help us to improve the software
development productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

45. Improving the social and communication structure of a software organization
will incorporate features like effective team formation.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

2 2 2 2 2

Personality type questions

This part aims to indicate the importance of the factors potentially affecting an individual’s
personality characteristics. Please select the degree of importance of the factors for each question.

46. The ability to engage in social interactions.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

47. The capacity to act in the pursuit of socially valued goals (i.e. social courage).

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

48. The skills and confidence in conversations.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

www.manaraa.com

49. The grouping of people as being factual or fictional.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

50. The preference of an individual to rely on experiences or hunches.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

51. The preference for focusing on specification or generalizations.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

52. An individual’s ability for being firm or gentle.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

53. Maintaining a focus on individual’s values or following general principles.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

www.manaraa.com

54. The degree of valuing thoughts over emotions.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

55. Developing skills for either planning ahead or adapt as you go.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

56. The valuation of process over product.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

57. The ability to act quickly and decide fast.

Very
Important

Important Moderately
Important

Little
Importance

2 2 2 2

www.manaraa.com

Appendix B

Sample Coding for Extroversion

245

www.manaraa.com

Open Coding Axial Coding Selective

Coding
Core Category

• A lack of ability to
initiate conversation or
able to maintain a
conversation with their
peers.

• Initiating conversations
to form social
interactions.

• Passive/defensive
interaction styles tend
to withdraw from
conversations as well as
social interactions.

• Positive social
interactions affect
software team
effectiveness.

• Social interactions cause
complex
interrelationships.

• Social interrelationships
can be complex and
difficult to understand

Conversation Social
Interactions

Extroversion

Interaction

Interrelationships

• Helping a teammate to
develop the social
courage he possess

• A social team may risk
arguing in order to
improve team
productivity

• Disputes are caused by
disagreement and may
promote social courage

A Teammate
Social Courage A Social Team

Arguing

• Conversationalist loves
to be in contact, they
practice their skills in
night-outs, parties, and
lunches or even with
informal chats in the
company corridors.

• Developing confidence
in social activities
requires basic skills in
conversation especially
in daily kick-off
meetings

• Meeting room is like a
temple; a confident
place to have a chat, our
burn down charts and
story cards all over its
walls.

A night out Skills and
Confidence in
Conversations

Party
Contact

Meeting Room

www.manaraa.com

Appendix C

Survey Data

247

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

Appendix D

Cronbach Alpha Calculations

α(39questions) =
39

38

(
162.02− 30.47

162.02

)
= 0.83 (D.1)

αProductivity(17questions) =
17

16

(
34.25− 12.50

34.25

)
= 0.68 (D.2)

αSocialProductivity(12questions) =
12

11

(
25.35− 8.50

25.35

)
= 0.73 (D.3)

αSocialCapital(10questions) =
10

9

(
30.23− 9.46

30.23

)
= 0.76 (D.4)

251

www.manaraa.com

Appendix E

Pilot Study Card Game Game Data

252

www.manaraa.com

INTERVIEW	 RESPONSES:
ID-‐NO Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36

1 1 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 2 1 2 1 1 1 1 2 2 2 1 1 2 2 1 2 2 2 2 1
2 1 1 1 2 2 2 1 1 2 1 1 2 2 1 1 2 2 1 2 2 1 1 1 2 2 1 1 1 2 1 1 2 1 2 2 2
3 2 1 2 2 2 2 2 2 2 1 1 2 1 1 1 2 1 2 2 2 2 1 1 2 1 2 1 1 2 1 1 2 2 2 1 2
4 1 1 1 2 2 2 2 1 2 1 2 2 2 2 1 2 1 2 2 2 1 1 2 2 2 2 2 1 2 1 2 2 1 1 2 2
5 1 1 1 2 2 2 2 1 2 1 2 1 2 1 1 2 1 1 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 1 1 1
6 2 2 1 2 1 1 2 2 1 1 2 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 1 1 2 1 1 2 1 1 2 2
7 1 1 1 2 2 1 2 1 2 1 2 2 2 2 1 2 1 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 1 2 2
8 1 2 2 1 2 1 1 1 2 2 1 2 1 1 1 1 2 1 2 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 1 1
9 2 2 2 1 1 2 1 1 2 2 1 1 1 2 1 2 2 1 1 1 1 1 2 2 1 2 1 1 1 2 2 2 1 2 1 2
10 2 1 2 1 2 1 2 1 2 2 1 1 1 2 1 2 1 1 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1
11 2 1 1 2 2 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 1 2 2 2 1 2 1 2 2 2
12 1 2 1 2 1 2 2 1 2 2 1 1 1 2 2 2 2 1 2 1 2 1 2 2 1 2 1 2 2 1 1 2 1 2 2 1
13 1 1 2 2 2 2 1 1 2 2 1 1 1 1 1 2 1 1 2 1 1 1 2 2 1 2 1 1 2 2 1 1 2 2 2 2
14 2 1 2 1 1 2 1 1 2 2 1 1 1 1 2 1 1 1 1 2 2 2 1 2 1 2 1 1 1 2 1 1 1 1 2 2
15 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1

RE-‐INTERVIEW	 RESPONSES:
ID-‐NO Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36

1 2 2 1 1 2 1 1 1 2 1 1 2 1 2 2 2 2 1 2 1 1 2 2 2 2 2 1 1 2 2 2 1 2 1 1 2
2 2 1 2 2 2 2 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 2 2 1 1 2 2 1 1 1 2 1 2
3 1 1 1 2 2 2 2 2 1 2 2 2 1 1 2 2 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 2 2 2 2 2
4 2 1 1 2 2 1 2 1 2 1 1 2 1 2 1 2 2 2 2 2 2 1 1 2 1 1 1 1 2 1 2 2 2 2 1 2
5 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 2 2 1 1 1 1 2 2 1 2 1 1 1 1
6 2 2 1 2 1 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1 2 2
7 2 1 1 2 2 2 2 1 2 1 2 2 2 1 1 2 1 2 2 2 2 1 1 2 2 2 2 1 2 1 1 2 2 2 1 2
8 1 2 2 1 2 1 1 1 2 2 1 2 1 1 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1
9 2 2 2 1 1 2 1 1 2 2 1 1 1 2 1 2 2 1 1 1 2 1 2 2 1 2 1 1 1 2 1 2 1 2 1 2
10 2 1 2 2 2 1 2 1 2 2 1 1 1 2 1 2 1 1 2 2 2 2 1 2 2 2 1 1 2 1 2 1 1 2 1 1
11 2 1 1 1 2 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 1 2 2 1 1 2 2 2 1 2 1 2 2 2
12 1 2 1 1 1 2 2 1 2 2 1 1 1 2 2 2 2 1 2 1 2 2 2 1 1 1 2 2 2 1 1 2 1 2 2 1
13 1 1 2 2 2 2 1 1 2 2 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 2 1 1 2 2 2 2
14 2 1 2 2 1 2 1 1 2 2 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 2 2 1 1 2 1 1 1 1 2 2
15 1 1 1 1 2 2 2 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 2 2 1 1

www.manaraa.com

ID-‐NO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

ID-‐NO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50 Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60 Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70
2 2 1 2 2 1 1 2 1 1 2 1 1 1 1 1 2 2 1 2 1 1 2 2 2 1 1 1 2 2 2 2 1 2
1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 2 1 2 2 1 2
1 1 2 2 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 2 2 2 2 1 1
1 2 2 2 2 1 2 2 1 2 1 1 2 1 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 2 2 2 2
1 2 2 1 1 1 2 2 2 1 2 1 2 1 1 2 1 2 1 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1
2 2 1 1 2 1 2 1 1 2 1 1 1 1 1 2 1 2 2 2 2 1 1 2 2 1 1 1 2 2 1 2 1 2
1 2 1 2 2 1 1 2 1 2 2 1 2 1 1 1 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2
1 1 2 1 1 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 1 1 1 1 2 2 1 1 2 1 2 2 2 1
2 1 1 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 1 1 2 1 2 1 1 2 2 1 1 2 2 2 1 2
2 2 1 1 1 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 1 2 2 1 2 1 1 1 2 1 2 1 1 2
1 2 1 2 2 2 2 1 2 1 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 1 2
2 2 1 1 2 1 2 1 1 1 2 2 1 2 2 2 1 1 2 2 2 2 2 1 2 2 1 2 2 1 1 2 1 2
2 1 2 2 2 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 2 2 1 2 2 2 1 1 2 1 2 2 1 2
2 1 1 1 2 2 1 2 2 1 1 2 1 1 1 1 1 1 2 1 1 1 2 2 1 1 2 1 1 2 1 2 2 2
1 1 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 2 2 2 2 1 1 2 1 2 1 1

Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50 Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60 Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70
2 1 1 2 1 1 2 2 2 1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 2 2 2 1 2
1 2 1 2 1 2 2 2 1 2 2 1 2 1 1 1 1 2 2 2 2 2 1 1 2 2 2 1 2 1 2 1 1 2
2 1 2 2 2 1 1 2 2 1 2 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2
2 2 2 2 1 1 2 2 1 2 1 1 1 1 1 1 1 2 1 2 2 2 2 1 2 1 2 1 2 1 2 2 1 1
1 1 1 1 1 1 2 2 2 1 2 1 2 1 1 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2
1 2 1 2 2 2 2 2 1 2 1 1 1 1 1 2 1 2 2 2 2 1 1 2 2 1 1 1 2 2 2 2 2 1
1 2 1 2 1 1 1 2 1 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 2 2 2
1 1 2 1 1 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 1 1 1 1 2 2 1 1 2 1 2 2 2 1
2 1 1 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 1 1 2 1 2 1 1 2 2 1 1 2 2 2 1 2
2 2 1 1 1 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 1 2 2 1 2 1 1 1 2 1 2 1 1 2
1 2 1 2 2 2 2 1 2 1 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 1 2
2 2 1 1 2 1 2 1 1 1 2 2 1 2 2 2 1 1 2 2 2 2 2 1 2 2 1 2 2 1 1 2 1 2
2 1 2 2 2 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 2 2 1 2 2 2 1 1 2 1 2 2 1 2
2 1 1 1 2 2 1 2 2 1 1 2 1 1 1 1 1 1 2 1 1 1 2 2 1 1 2 1 1 2 1 2 2 2
1 1 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 2 2 2 2 1 1 2 1 2 1 1

www.manaraa.com

Appendix F

Summary of Interview Reinterview

Table for All Questions

255

www.manaraa.com

Question
Number a b c d κ

1 5 1 4 5 35.9
2 10 0 1 4 84.21
3 7 2 1 5 59.46
4 3 3 2 7 28.57
5 4 0 0 11 100
6 4 1 1 9 70
7 6 3 0 6 61.54
8 12 0 0 3 100
9 2 3 1 9 33.33
10 7 0 1 7 86.73
11 9 3 1 2 33.33
12 6 0 1 8 86.49
13 11 1 0 3 81.48
14 7 1 2 5 59.46
15 10 0 1 4 84.21
16 3 1 0 11 81.48
17 7 1 1 6 73.21
18 10 0 1 4 84.3
19 2 2 0 11 59.46
20 6 1 0 8 86.49
21 3 1 5 6 22.41
22 7 3 3 2 10
23 8 1 1 5 72.22
24 1 3 1 10 18.92
25 5 2 0 8 72.73
26 2 4 2 7 11.76
27 9 2 3 1 7.41
28 10 2 1 2 44.44
29 3 1 0 11 81.48
30 8 0 2 5 72.73
31 8 2 3 2 21.05
32 3 2 0 10 66.67
33 7 1 2 5 59.46
34 3 1 2 9 52.63
35 5 4 1 5 35.9
36 5 0 1 9 85.71
37 6 1 2 6 60.18
38 6 2 0 7 73.68
39 8 2 0 5 72.73
40 5 0 1 9 85.71
41 5 4 1 5 35.9
42 9 1 1 4 70
43 5 0 1 9 85.71
44 4 0 1 10 84.21
45 6 1 1 7 73.21
46 10 0 0 5 100
47 3 0 1 11 81.48
48 9 0 1 5 85.71
49 7 2 1 5 59.46
50 13 0 0 2 100
51 12 0 1 2 76.19
52 11 0 0 4 100
53 9 3 0 3 54.55
54 3 0 1 11 81.48
55 5 1 3 6 47.37
56 4 2 0 9 70.59
57 5 0 0 10 100
58 7 0 3 5 60.87
59 6 3 1 5 47.37
60 7 1 0 7 86.73
61 2 0 2 11 59.46
62 5 1 0 9 85.71
63 6 0 1 8 86.49
64 14 0 0 1 100
65 3 0 1 11 81.48
66 7 0 1 7 86.73
67 3 0 1 11 81.48
68 1 2 0 12 44.44
69 9 1 3 2 33.33
70 2 2 2 9 31.82

256

www.manaraa.com

Appendix G

Avarage of Weights - Survey Data

257

www.manaraa.com

ID NO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
1 0.75 0.50 0.50 0.50 0.75 0.50 0.50 0.50 0.50 0.50 0.75 0.75
2 0.75 0.50 0.75 1.00 0.75 0.50 0.50 0.75 0.25 0.50 1.00 0.75
3 0.75 0.25 0.50 0.50 0.75 0.50 0.75 0.75 0.25 0.50 0.75 0.50
4 0.75 0.50 0.50 0.50 0.50 0.25 0.75 0.75 0.50 0.50 0.50 0.50
5 0.75 0.75 0.50 0.50 0.75 0.75 0.50 0.50 0.50 0.50 0.50 0.50
6 1.00 0.75 1.00 1.00 0.75 1.00 1.00 1.00 0.75 0.75 1.00 0.50
7 0.75 0.50 0.75 0.75 0.75 0.75 0.50 0.75 0.50 0.50 0.50 0.75
8 0.75 0.50 0.75 0.50 0.75 0.50 0.75 0.75 0.50 0.50 1.00 0.50
9 0.75 0.50 0.75 0.50 0.75 0.50 0.50 1.00 0.50 0.50 0.75 0.50

10 0.75 0.50 0.50 0.50 0.75 0.50 0.50 0.75 0.50 0.75 0.75 0.75
11 0.75 0.75 0.50 0.50 0.75 0.25 0.75 0.50 0.50 0.50 1.00 0.75
12 0.75 0.75 0.75 0.75 0.75 0.25 0.75 0.75 0.50 0.50 0.50 0.75
13 0.75 0.50 0.50 0.50 0.75 0.75 0.50 0.75 0.50 0.50 0.50 0.75
14 0.75 0.50 0.50 0.50 0.75 0.50 0.75 0.75 0.50 0.75 0.75 0.75
15 0.75 0.50 0.50 0.75 0.75 0.75 0.75 0.75 0.50 0.50 0.75 0.75
16 1.00 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.50 0.50 0.75 0.75
17 0.75 0.50 0.75 0.50 0.75 0.75 0.50 0.50 0.50 0.50 0.50 0.50
18 0.75 0.75 0.75 0.50 1.00 0.50 0.75 0.50 0.50 0.50 0.75 0.75
19 0.75 0.75 1.00 1.00 0.75 0.75 0.50 1.00 0.25 0.50 0.75 0.75
20 0.75 0.25 0.75 0.75 0.75 0.50 0.75 0.75 0.50 1.00 0.50 0.50
21 0.75 0.75 0.75 0.75 0.75 0.50 0.50 1.00 0.50 0.75 0.75 0.75
22 1.00 0.75 0.75 0.75 1.00 0.25 0.75 0.75 0.50 0.50 0.75 0.75
23 0.75 0.50 0.50 0.50 1.00 0.50 0.75 0.50 0.50 0.50 0.75 0.75
24 1.00 0.50 0.50 0.50 0.75 0.50 0.50 0.75 0.50 1.00 1.00 0.75
25 0.75 1.00 0.25 0.25 1.00 0.75 0.25 1.00 0.25 1.00 0.25 0.25
26 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.50 0.50 0.75 0.75 0.75
27 1.00 0.50 0.75 0.50 1.00 0.50 0.75 1.00 0.25 0.50 0.50 1.00
28 0.50 0.25 0.75 0.75 0.50 0.50 0.50 1.00 0.25 0.50 0.75 0.50
29 0.75 0.50 0.50 0.50 1.00 0.75 0.75 1.00 0.50 0.75 0.75 0.50
30 0.75 0.50 0.75 0.50 0.75 0.50 0.75 0.75 0.50 0.75 0.75 0.75
31 1.00 0.75 1.00 0.75 0.75 0.50 0.75 0.50 0.75 0.75 0.50 0.75
32 0.75 0.50 0.75 0.75 1.00 0.50 0.50 1.00 0.50 0.75 0.75 0.75
33 0.75 0.50 0.75 0.50 1.00 0.50 0.50 0.50 0.25 0.50 0.75 0.75
34 1.00 0.75 1.00 1.00 0.75 0.25 0.75 0.25 0.50 0.50 0.75 0.50
35 0.75 1.00 1.00 0.50 0.75 0.25 0.75 0.50 0.25 0.75 0.75 1.00
36 1.00 0.50 0.75 0.75 1.00 0.50 1.00 0.75 1.00 0.75 1.00 0.75
37 0.75 0.25 0.75 0.50 0.75 0.50 0.50 0.75 0.75 0.75 0.75 0.50
38 0.75 0.75 0.75 0.75 0.50 0.50 0.75 0.75 0.50 0.75 0.75 0.75
39 0.75 0.50 1.00 0.75 1.00 0.50 0.50 0.75 0.75 0.50 0.75 1.00
40 0.75 0.50 0.50 0.50 1.00 0.25 0.75 0.50 0.75 0.75 0.75 0.75
41 0.75 0.50 0.75 0.75 0.75 0.50 0.75 1.00 0.50 0.50 1.00 0.50
42 0.75 0.25 0.75 0.25 0.50 0.75 0.50 0.75 0.25 0.50 0.50 0.25
43 1.00 0.75 0.50 0.25 1.00 0.50 0.50 1.00 0.25 0.75 1.00 0.50
44 1.00 0.50 1.00 1.00 0.75 0.25 0.75 0.75 0.25 0.50 1.00 0.75
45 0.50 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.25 0.50 0.75 0.75
46 0.75 0.50 0.75 0.50 0.75 0.75 0.50 0.50 0.25 0.25 0.75 0.75
47 0.75 0.75 0.75 0.50 1.00 0.50 1.00 0.25 0.50 0.50 1.00 1.00
48 0.75 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.75 0.25
49 0.75 0.25 1.00 0.75 0.75 0.75 0.50 0.75 0.25 0.75 0.50 0.75
50 0.75 1.00 0.50 0.75 1.00 0.75 0.50 1.00 0.50 1.00 1.00 0.25
51 0.75 0.25 0.75 0.25 0.25 1.00 0.75 0.75 0.50 0.75 0.25 0.75
52 0.75 0.50 0.75 0.75 1.00 0.75 0.75 0.75 0.50 1.00 0.75 0.75
53 1.00 1.00 1.00 1.00 1.00 0.25 1.00 0.50 1.00 1.00 1.00 0.75
54 0.75 0.75 0.50 0.50 0.75 0.75 0.50 0.75 0.50 0.50 0.75 0.25
55 0.75 1.00 0.75 0.75 0.75 0.75 0.75 0.50 0.50 1.00 0.75 0.25
56 1.00 0.75 1.00 0.75 1.00 0.75 0.50 0.75 0.50 1.00 1.00 0.75
57 0.75 0.75 0.75 0.50 1.00 0.75 0.75 0.50 0.50 0.50 0.75 0.25
58 0.75 0.75 0.75 0.75 0.75 0.50 0.75 0.50 0.50 0.50 0.75 0.50
59 1.00 0.25 1.00 0.75 0.75 0.50 0.75 1.00 0.25 0.75 0.75 0.75
60 0.75 0.75 0.75 0.50 0.75 1.00 0.75 0.75 0.50 1.00 0.75 0.50
61 1.00 0.50 1.00 1.00 0.75 0.25 0.75 0.75 0.50 0.50 1.00 0.50
62 0.75 0.50 0.75 0.75 1.00 0.50 0.75 0.50 0.50 0.75 0.75 0.75
63 1.00 0.75 1.00 1.00 0.75 1.00 0.50 1.00 0.25 1.00 1.00 0.75
64 0.75 0.75 0.75 0.75 0.75 0.50 0.50 0.75 0.50 0.75 0.50 0.50
65 0.75 0.75 0.50 0.75 0.75 0.50 0.75 0.50 0.50 0.75 0.75 0.50
66 0.50 1.00 0.50 1.00 0.75 0.25 0.75 1.00 0.75 1.00 1.00 0.75
67 1.00 0.25 1.00 0.75 0.75 0.25 0.75 1.00 0.50 0.75 0.75 0.75
68 0.75 0.50 0.75 0.75 0.75 0.25 0.50 0.75 0.75 0.50 0.75 0.50
69 1.00 0.25 0.75 0.25 1.00 1.00 0.75 0.75 0.25 0.50 1.00 0.25
70 0.50 0.75 0.50 0.75 1.00 0.25 0.50 1.00 0.25 0.50 0.75 0.75
71 0.75 0.75 0.75 1.00 0.75 0.25 1.00 1.00 0.50 0.75 1.00 0.25
72 1.00 1.00 0.25 1.00 0.75 1.00 0.50 1.00 0.25 0.25 1.00 0.50
73 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.50
74 0.75 0.75 0.75 0.75 0.75 0.50 0.75 0.50 0.50 0.50 0.75 0.50
75 1.00 0.50 0.50 0.50 0.75 0.75 0.50 1.00 0.75 0.75 0.75 1.00
76 1.00 1.00 1.00 0.75 0.75 0.75 0.50 0.50 0.75 0.75 0.75 0.75
77 1.00 0.75 1.00 0.75 0.50 0.50 0.75 0.75 0.25 0.75 0.75 0.75
78 0.75 0.25 0.75 0.50 0.75 0.25 0.50 0.75 0.50 1.00 0.75 0.25
79 0.75 0.75 0.75 0.75 0.75 0.50 0.75 0.50 0.50 0.50 0.75 0.50
80 0.75 0.25 0.50 0.75 0.50 0.75 0.75 1.00 0.50 1.00 0.75 0.50
81 0.75 0.25 1.00 0.25 0.75 0.75 0.75 0.50 0.25 0.50 0.75 0.50
82 0.75 0.50 0.75 0.75 0.50 0.50 0.75 0.75 0.50 0.50 0.50 0.25
83 0.75 0.50 0.75 0.75 0.75 0.50 0.75 0.75 0.50 0.50 0.75 0.50
84 0.50 0.50 0.75 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.75 0.25
85 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1.00 0.50
86 1.00 0.25 1.00 1.00 1.00 0.25 1.00 0.75 0.50 1.00 1.00 1.00
87 1.00 0.50 1.00 0.75 0.75 0.25 0.75 0.75 0.75 0.75 0.75 0.75
88 0.75 0.50 0.75 0.50 0.75 0.75 0.25 0.50 0.25 0.50 0.75 0.75
89 0.75 0.50 0.50 0.50 1.00 0.50 1.00 0.75 0.75 0.75 0.75 0.75
90 0.75 0.50 0.50 0.75 0.75 0.50 0.75 0.75 0.75 0.50 0.75 0.50
91 0.75 0.50 1.00 0.75 0.75 0.50 0.75 0.75 0.50 0.75 0.75 0.75
92 1.00 0.75 1.00 0.50 1.00 1.00 1.00 1.00 0.25 1.00 1.00 0.25
93 0.75 0.75 1.00 0.75 0.75 1.00 0.75 0.75 0.50 0.50 0.75 0.75
94 0.75 0.50 0.75 0.75 0.75 0.50 0.75 0.75 0.50 0.50 0.75 0.75
95 0.50 0.75 0.50 0.50 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.50
96 0.75 0.25 0.75 0.75 0.75 0.50 0.50 0.75 0.50 0.75 0.75 0.75
97 0.75 0.50 0.75 0.75 0.75 0.50 0.75 0.75 0.75 0.50 0.50 0.75
98 0.75 0.25 1.00 0.75 0.75 0.25 1.00 0.75 0.50 0.50 1.00 0.50

www.manaraa.com

ID NO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
99 0.75 0.75 0.50 0.50 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.25

100 1.00 0.75 0.75 0.50 0.75 0.75 0.50 0.50 0.25 0.50 0.75 0.50
101 0.75 0.75 0.75 0.50 1.00 0.50 0.75 1.00 0.25 0.75 0.75 0.75
102 0.75 0.50 0.75 0.75 0.75 0.50 0.75 0.75 0.50 1.00 0.75 0.25
103 0.75 0.50 0.75 0.50 0.75 0.50 0.75 0.75 0.50 0.50 0.75 0.25
104 0.75 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.75 0.50
105 0.75 0.75 1.00 0.75 0.75 0.75 0.50 0.50 0.25 0.75 0.75 0.25
106 0.75 0.50 0.75 0.50 1.00 0.25 1.00 0.50 0.50 0.50 0.75 0.50
107 0.75 0.25 1.00 1.00 1.00 0.25 0.75 0.75 0.25 0.75 0.75 0.25
108 1.00 0.75 0.75 1.00 0.75 0.25 1.00 1.00 0.25 1.00 1.00 0.75
109 1.00 0.25 1.00 0.75 1.00 0.25 1.00 1.00 1.00 1.00 1.00 0.75
110 0.75 0.50 0.75 0.50 0.75 0.75 0.50 1.00 0.75 0.75 1.00 0.50
111 0.75 0.50 0.75 0.50 0.75 0.50 0.75 0.50 0.50 0.75 0.75 0.25
112 0.75 0.75 0.50 0.50 0.75 0.50 0.75 0.75 0.50 0.50 0.50 0.50
113 0.75 0.75 0.75 0.75 0.50 0.25 0.75 0.75 0.25 0.50 0.75 0.75
114 0.75 0.75 0.50 0.50 0.75 0.75 0.50 0.75 0.50 0.50 0.50 0.75
115 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
116 0.75 0.75 0.50 0.50 0.75 0.75 0.50 0.75 0.50 0.75 1.00 0.75
117 0.75 0.50 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.75
118 1.00 1.00 0.75 1.00 1.00 0.25 1.00 1.00 1.00 1.00 1.00 0.25
119 0.75 0.25 0.75 0.50 1.00 0.50 0.50 0.75 0.50 0.25 0.50 0.50
120 0.75 0.50 0.75 0.50 0.75 0.50 0.75 0.50 0.50 0.50 0.75 0.50
121 0.75 0.75 0.50 0.50 0.75 0.50 0.75 1.00 0.50 0.75 1.00 0.50
122 0.75 0.50 0.50 0.50 0.75 0.50 0.75 0.75 0.75 0.50 0.75 0.75
123 0.75 1.00 0.75 0.75 0.50 0.75 0.75 1.00 1.00 0.50 1.00 0.75
124 0.75 0.50 0.50 0.50 0.75 0.25 0.75 0.50 0.50 0.50 1.00 0.75
125 1.00 0.25 0.25 1.00 0.75 1.00 0.50 1.00 0.25 0.25 0.50 0.25
126 0.75 0.50 1.00 1.00 0.75 1.00 0.75 0.75 0.50 0.75 0.75 0.50
127 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.75 0.25 0.75 1.00 0.50
128 0.75 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.50 0.75 0.75 0.50
129 1.00 0.75 0.75 0.50 0.75 0.25 0.50 1.00 0.50 1.00 0.75 0.50
130 1.00 0.50 0.75 0.50 0.75 0.25 1.00 0.75 0.75 0.75 0.50 0.75
131 0.75 0.50 0.75 0.75 0.75 0.75 0.75 0.50 0.25 0.50 0.50 1.00
132 1.00 0.75 1.00 0.50 0.75 0.50 0.75 0.75 0.25 0.75 0.50 0.75
133 0.75 0.50 0.50 0.75 0.75 0.75 0.50 0.50 0.50 0.50 0.75 0.50
134 1.00 0.50 0.75 0.75 0.75 0.75 0.75 0.50 0.25 0.75 0.75 0.75
135 0.75 0.25 1.00 0.75 1.00 0.25 1.00 1.00 1.00 0.75 0.75 0.25
136 1.00 0.50 1.00 0.75 0.75 0.25 0.75 0.75 0.25 0.75 0.75 0.75
137 1.00 1.00 1.00 0.75 0.75 0.25 0.75 0.50 0.75 0.50 0.75 0.25
138 0.75 0.75 1.00 0.75 0.75 0.50 0.75 0.50 0.50 0.50 0.75 0.25
139 0.75 0.75 0.75 1.00 0.75 0.50 0.75 0.50 0.50 1.00 0.75 0.75
140 0.75 1.00 0.75 1.00 0.75 0.50 0.75 1.00 1.00 0.50 1.00 0.75
141 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
142 0.75 0.50 0.75 0.50 0.75 0.50 0.50 0.50 0.75 0.75 0.50 0.75
143 0.75 0.50 0.75 0.75 0.75 0.50 0.75 1.00 0.25 0.75 0.75 0.25
144 0.75 0.50 0.75 0.75 0.75 0.50 0.75 0.25 0.50 0.50 0.75 0.25
145 0.50 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.50 0.75 0.50 0.75
146 0.75 0.50 0.75 0.75 0.75 0.50 0.50 0.75 0.50 0.50 0.75 0.75
147 0.75 0.50 0.75 0.50 0.50 0.75 0.50 0.75 0.25 0.25 0.75 0.75
148 0.50 0.75 0.50 0.50 0.75 0.75 0.25 0.50 0.25 0.50 0.75 0.75
149 0.50 0.25 0.75 0.75 0.75 0.25 0.50 1.00 0.50 0.50 0.75 0.75
150 0.75 0.50 0.75 0.50 1.00 0.25 1.00 1.00 0.25 1.00 1.00 0.50
151 0.75 0.75 0.50 0.75 0.75 0.25 0.50 0.75 0.75 0.50 0.75 0.75
152 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.25 0.75 0.75 0.50
153 1.00 0.50 0.75 0.50 0.75 0.25 0.50 0.75 0.50 1.00 0.50 0.75
154 1.00 0.25 0.50 0.75 0.75 0.25 1.00 1.00 0.75 0.50 1.00 0.75
155 1.00 0.75 0.75 0.50 0.50 0.50 0.50 1.00 0.25 0.50 0.75 0.75
156 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.50
157 0.75 0.75 1.00 1.00 1.00 0.25 0.75 1.00 0.50 1.00 0.75 0.50
158 0.75 0.50 0.75 0.75 0.50 0.50 0.75 1.00 0.25 1.00 1.00 0.25
159 0.75 0.25 0.75 0.25 0.50 0.75 0.25 0.75 0.25 0.75 0.75 0.25
160 1.00 1.00 1.00 0.75 1.00 0.25 1.00 0.25 0.75 1.00 1.00 0.75
161 0.75 0.75 0.75 0.25 0.75 0.50 0.75 0.50 0.50 0.75 0.75 0.50
162 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 0.50 1.00 1.00 1.00
163 1.00 1.00 0.75 0.50 1.00 0.50 1.00 1.00 0.75 0.75 1.00 0.50
164 0.75 0.75 0.75 0.50 0.50 0.50 0.50 1.00 0.50 0.50 0.75 0.50
165 0.75 0.50 0.75 0.50 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.75
166 0.50 0.75 0.75 0.50 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.75
167 0.75 0.75 0.75 0.50 1.00 0.50 0.75 1.00 0.50 0.75 0.75 0.75
168 0.75 0.50 0.75 0.75 0.75 0.25 0.75 0.75 0.50 0.75 0.75 0.50
169 0.75 0.50 0.75 0.75 0.75 0.50 0.50 0.75 0.75 0.75 0.75 0.50
170 0.75 0.75 0.75 0.75 0.75 0.75 0.50 1.00 0.75 0.75 0.75 0.75
171 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
172 0.75 0.50 0.75 0.75 1.00 0.50 0.75 0.75 0.50 0.50 1.00 0.50
173 0.75 0.50 0.50 0.75 0.75 0.75 0.50 1.00 0.50 0.50 0.75 0.75
174 0.75 0.25 1.00 0.25 1.00 0.75 0.50 0.75 0.75 0.75 1.00 0.50
175 0.75 0.50 0.50 0.75 0.75 0.50 0.75 0.75 0.50 0.50 0.75 0.75
176 0.75 0.75 0.75 0.50 1.00 0.50 0.50 0.75 0.50 0.75 1.00 0.50
177 0.75 0.50 0.50 0.25 0.75 0.75 0.75 0.50 0.50 0.75 0.75 0.50
178 1.00 1.00 1.00 0.75 1.00 0.25 1.00 0.50 1.00 1.00 1.00 0.75
179 0.75 0.50 0.75 0.75 0.75 0.25 0.75 0.50 0.50 0.50 0.75 0.50
180 0.75 0.50 0.50 0.25 0.50 0.50 0.75 0.50 0.50 0.50 0.50 0.25
181 0.75 0.50 0.50 0.75 0.75 0.25 0.50 0.50 0.50 0.50 0.75 0.50
182 0.75 0.50 0.75 0.75 0.75 0.50 0.75 0.75 0.50 0.75 0.50 0.75
183 1.00 0.75 0.75 0.75 0.75 0.50 0.75 0.50 0.50 1.00 0.75 0.75
184 1.00 0.50 1.00 0.75 0.75 0.50 0.50 1.00 1.00 0.50 1.00 1.00
185 0.75 0.50 0.50 0.25 0.75 0.75 0.75 0.75 0.50 0.75 0.75 0.50
186 0.75 0.50 0.75 0.50 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
187 1.00 0.75 0.50 0.50 1.00 0.25 1.00 0.75 0.25 1.00 1.00 0.25
188 0.75 0.50 0.75 0.50 0.75 0.50 0.50 0.75 0.50 0.50 0.75 0.50
189 0.75 0.50 0.75 0.50 0.75 0.50 0.50 1.00 0.25 0.75 0.50 0.75
190 0.75 1.00 1.00 0.50 1.00 0.75 1.00 1.00 0.75 1.00 1.00 0.50
191 0.75 0.50 0.75 0.50 0.75 0.50 0.75 0.50 0.50 0.50 0.75 0.75
192 0.75 0.75 0.75 0.50 0.75 0.50 1.00 1.00 0.50 0.75 1.00 0.75

Average of
Weights 0.80 0.61 0.74 0.65 0.79 0.55 0.69 0.75 0.51 0.68 0.77 0.60

www.manaraa.com

Appendix H

Industrial Implementation of Card

Game Data

260

www.manaraa.com

www.manaraa.com

www.manaraa.com

Appendix I

Situational Context Cards

263

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

	Contents
	Abstract
	I Preliminaries
	Introduction
	Research Problem
	Context of Current Research
	Value-Based Software Development Productivity
	Games Playable by Software Teams

	Research Objectives
	Research Questions and Hypotheses
	Organization of the Thesis

	Background
	Introduction
	Software Development Process
	Software Process Models
	Spiral Model
	WINWIN Spiral Model

	Software Process Improvement
	ISO/IEC 12207 Software Life-cycle Model
	Agile Methods
	Chapter Summary

	II Research Methodology
	Research Design and Methodology
	Introduction
	Research Philosophy
	Qualitative Research
	Quantitative Research
	Triangulation and Mixed Methods

	Choice of a Research Methodology
	Case Study Research
	Threats to Validity

	Survey Research
	Structural Equation Modeling
	Game Playing as a Data Collection Method
	Our Novel Approach

	Grounded Theory
	Justification for Using Grounded Theory

	Focus Group
	Summary

	Research Process: Case Study I
	Research Process: Case Study II
	Holistic View of Research Activities
	Chapter Summary

	III Literature Review & Theoretical Contributions
	Application of Games in Software Engineering
	Introduction
	Defining Games and Gamification
	Game Theory
	Games in Software Engineering
	Mechanism Design
	A Game Theoretic Perspective
	A Conceptual Game Model
	Two Person Game Form

	Game Composition as a MD Problem
	Rules of the Game
	Chapter Summary

	Social and Value Dynamics of Software Development
	Introduction
	The Software Ecosystem
	Social and Value Dynamics
	The Software Artifact
	Productivity
	Economic Productivity
	Software Productivity
	Software Productivity Improvement
	Factors of Productivity

	The Economic Value of a Software Development Process
	Human and Social Capital
	Social Productivity
	Chapter Summary

	Roles and Personality Traits
	Introduction
	Roles in Software Development Processes
	Content Analysis of Software Development Roles
	Roles in traditional software development
	Roles in ISO/IEC 12207
	Roles in Extreme Programming
	Roles in Scrum
	Roles in FDD
	Roles in People CMM
	A Summary of Roles Contained in Selected Models
	The Roles Wheel

	Personality Research
	Jung's Model of Cognitive Modes
	Personality Research in Software Engineering
	Personality Temperaments
	The Periodic Table Approach

	Chapter Summary

	IV Empirical Contributions
	Empirical Findings: Case Study I
	Introduction
	Data Collection
	Industrial Focus Group
	Survey Instrument

	Data Analysis
	Confirmatory Factor Analysis and Construct Validity
	Models with One Latent Construct
	Models for Social Productivity
	Models for Social Capital

	Models with Two Latent Constructs
	Refined Structural Equation Models
	The Tripartite SEM Model
	The Impact of Teams and Roles to Productivity, Social Productivity, and Social Capital
	Case Study I: Threats to Validity
	Chapter Summary

	Empirical Findings: Case Study II
	Introduction
	Crafting the Instrument and Protocols
	Initiation phase
	Initial Interviews
	Validation of the Codebook

	Card Creation Phase
	Comparison Phase

	Rules of the Game
	Quantitative Evaluation of the Survey Instrument
	Pilot Study I
	Pilot Study II
	Measuring the Reliability of Questions on Cards
	A Sample Calculation

	Quantification of the Instrument: Average of Weights
	An Industrial Implementation
	MBTI-Team Radar
	Software Teams
	Team Triskele
	Team Camelot
	Team Hector
	Team Finn
	Team Laran
	A Brief Discussion about Findings

	Case Study II: Threats to Validity
	Chapter Summary

	V Discussions & Conclusions
	Discussions
	Introduction
	Discussion of the Case Study I
	Validation Interviews
	Limitations

	Discussion of the Case Study II
	Validation of the Instrument
	Limitations

	Revisiting the Research Questions and Hypotheses
	Chapter Summary

	Conclusions and Future Work
	Introduction
	Industrial Case Study I
	Industrial Case Study II
	Research Contributions
	Recommendations for Future Work

	Bibliography

	VI Appendices
	Appendix Survey Instrument
	Appendix Sample Coding for Extroversion
	Appendix Survey Data
	Appendix Cronbach Alpha Calculations
	Appendix Pilot Study Card Game Game Data
	Appendix Summary of Interview Reinterview Table for All Questions
	Appendix Avarage of Weights - Survey Data
	Appendix Industrial Implementation of Card Game Data
	Appendix Situational Context Cards

